MOLECULAR SYSTEMATICS OF THE NEOTROPICAL GENUS *PSIGURIA* (CUCURBITACEAE): IMPLICATIONS FOR PHYLOGENY AND SPECIES IDENTIFICATION¹

P. ROXANNE STEELE^{2,3,4}, LAUREN M. FRIAR³, LAWRENCE E. GILBERT², AND ROBERT K. JANSEN^{2,3}

²Section of Integrative Biology, The University of Texas at Austin, 1 University Station C0930, Austin, Texas 78712 USA; and ³Institute of Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station C0930, Austin, Texas 78712 USA

Varying morphological features in many groups of tropical vines confound identification, requiring molecular tools for distinguishing species. Confusion is amplified in *Psiguria*, a small genus found in Central and South America and the Caribbean, because male and female flowers of these monoecious plants are widely separated by time and position on a branch. We present the first phylogeny of *Psiguria* utilizing a combination of eight chloroplast intergenic spacers, the internal transcribed spacer (ITS) regions of the nuclear ribosomal DNA repeat, and the intron of the low-copy nuclear gene serine/threonine phosphatase, for a total aligned length of 9456 base pairs. Analyses include multiple accessions of all species in the genus. The data support the monophyly of *Psiguria* and elucidate several species boundaries. Also presented are *Psiguria*-specific DNA barcodes, which include the chloroplast regions: *ndhC-trnV*, *rps16-trnQ*, *rpoB-trnC*, *ndhF-rpl32*, and *psbZ-trnM*. For the first time, systematists, ecologists, and evolutionary biologists will have the tools to confidently identify species of *Psiguria* with DNA barcodes that may be useful in other genera of Cucurbitaceae.

Key words: angiosperms; Caribbean; chloroplast; DNA barcoding; *Gurania*; Guraniinae; *Helmontia*; ITS; low-copy nuclear; phylogenetics.

Vines and lianas are important components of tropical forest ecosystems. They are found in both primary and secondary forests, at all levels of vegetation from forest floor to canopy, and they are most commonly seen without flowers. Adaptations for defense, camouflage, pollinator attraction, or increased exposure to light include leaf mimicry, changes in leaf shape, texture, or size over the life span of an individual, as well as variation in flower shape, size, and color. Such infraspecific transformations make identification based on morphology very challenging, if not impossible. One solution is to use molecular data to define species boundaries. An example is presented here with the genus *Psiguria* Arn. (Cucurbitaceae), whose

¹ Manuscript received 2 July 2009; revision accepted 1 October 2009.

The authors thank B. B. Simpson, D. R. Hansen, C. R. Linder, and two anonymous reviewers for valuable comments on the manuscript. The authors acknowledge the following research grants: NSF Doctoral Dissertation Improvement Grant DEB 0808294, the Plant Biology Program at The University of Texas at Austin, the American Society of Plant Biology, and the Botanical Society of America. They also thank MO, NY, F, GH, and TEX herbaria for approving the use of leaf material on loans for DNA studies; M. Condon (Cornell College), S. Swensen (Ithaca College), R. Abbott (University of Florida), T. S. Quedensley (University of Texas at Austin), and H. Schaefer (University of Munich) for providing leaf material; R. Fernández and P. Protti (Costa Rica), F. Axelrod (University of Puerto Rico-Río Piedras), T. Clase (Jardín Botánico Nacional Dominican Republic), O. Plata (Herbario Nacional de Bolivia), and K. Meza (Perú) for field assistance and collecting plants; M. Timaná (Pontificia Universidad Católica del Perú) for help with plant-collecting permits; and finally UT Austin's Brackenridge Field Laboratory for providing facilities and staff assistance that maintained living collections used in the work.

⁴ Author for correspondence (e-mail: roxisteele@msn.com); present address: University of Missouri-Columbia, 1201 Rollins St.-Bond LSC 311, Columbia, Missouri 65211 USA

doi:10.3732/ajb.0900192

species identifications are confounded by several morphological variants.

Psiguria is a neotropical genus of monoecious, perennial vines with a geographic distribution extending from southern Mexico to Paraguay and into the Caribbean islands. The genus has been the focus of several ecological and evolutionary studies on the sexual system and the interactions with various insects in the community, but there has never been a phylogeny proposed for the genus. Psiguria plays a central role in a suite of plant-animal interactions, including host to several species of Blepharoneura Loew fruit flies (Condon, 1984; Condon and Gilbert, 1990; Condon and Norrbom, 1994; Condon and Steck, 1997; Condon et al., 2008). Additionally, most species of Heliconius Kluk butterflies rely heavily on nutrients obtained from pollen of *Psiguria* flowers. Unlike other lepidopterans that obtain nitrogenous compounds necessary for egg production as larvae, Heliconius butterflies assimilate amino acids and proteins from pollen gathered by adults, principally from Psiguria and a few members of the sister genus, Gurania Cogn. (Gilbert, 1972, 1975, 1977; Boggs et al., 1981). Although most of the Heliconius-collected pollen is destroyed by the butterflies, a sufficient portion is transferred to female flowers (presumably mistaken for a pollen source [Gilbert, 1975]), fulfilling the butterfly's role as *Psiguria*'s primary pollen vector (Condon, 1984; Murawski and Gilbert, 1986). The historical relationship between these two evolving groups of organisms may have influenced the reproductive strategy of the butterflies and the separation of genera in the plant subtribe (Gilbert, 1993).

Psiguria species occur in low densities in neotropical rainforests, commonly growing over shrubs and trees along edges of gaps and streams (Condon, 1984; Murawski and Gilbert, 1986; Condon and Gilbert, 1990). The genus is generally characterized by large, glabrous, palmately 3- to 5-lobed or compound (3- to 5-foliolate), leathery leaves. However, these leaf

characteristics vary over the life of an individual. For example, first leaves of P. pedata (L.) R. A. Howard, found in the Greater Antilles, are simple, shallowly trilobed, and relatively membranous. Subsequent, or even adjacent, leaves may be more deeply lobed or completely separated into two or three leaflets. Leaves on mature P. pedata are coriaceous and show further division, typically pedate-three distinct leaflets with side leaflets that are further divided into two subleaflets. Psiguria are serially monoecious; i.e., male flowers emerge before the plants switch sex to produce female flowers (Gilbert, 1980; Condon, 1984). Flowers develop in clusters on long, pedunculate, indeterminate racemes or spikes. Both male and female flowers are salverform with tubular calyx and rotate petals; a similarity that, along with the stamen-like structure of the pistil, aids in "training" pollinator butterflies to visit both sexes. Sepals of both male and female flowers are green and short (relative to the sister genus Gurania). Petals are typically red with yellow bases, pink, or orange; however, this is another characteristic, along with flower diameter, that can change drastically over the life of an individual. The first male flower of P. ternata (M. J. Roem.) C. Jeffrey from Bolivia, for example, is typically light pink or salmon and very large and showy (12-13 cm in diameter). However, subsequent flowers are progressively smaller (down to 0.5–1.0 cm in diameter) with much darker, almost red, petals. Additionally, the calyx tubes of P. ternata flowers change from flask-shaped to cylindrical in consecutive flowers in an inflorescence. Furthermore, plants are not always in bloom, and sterile collections can make up approximately 15% of herbarium sheets. For these reasons and the fact that incomplete individuals of *Psiguria* are usually found on a given herbarium sheet, questions have been raised as to how many species there are, where species boundaries exist, and how to identify individual species. The primary goal of this study was to address these questions of species delimitation, a task that is becoming a priority for many systematists (Wiens, 2007).

The last complete taxonomic treatment of Psiguria was published by Cogniaux in 1916, using the genus name Anguria (Plum.) L. This name is now a nomen rejiciendum because it is a later homonym (published by von Jacquin 1760) of Anguria Mill. (1754). In his key to species, Cogniaux (1916) used leaf morphology and anther characteristics such as shape (straight or folded) and appendage texture (glabrous, papillose, blunt, or gradations of these) as major distinctive characters. As discussed above, leaf morphology varies over the life of an individual, and while anther shape may be a good taxonomic character, texture of the anther appendage also varies within a species (Steele, in press). Although Cogniaux (1916) recognized 29 species of Anguria, Jeffrey (1978) recognized only eight, and subsequent publications have resulted in 17 names listed in the International Plant Names Index (IPNI, 2008). In a key to Psiguria of Panama, Wunderlin (1978) used calyx tube shape and color along with leaf texture (membranous vs. coriaceous) to distinguish species. Again, some of these characters have been observed to vary in individuals throughout their lives. M. Nee (New York Botanical Garden) and C. Jeffrey (Royal Botanic Gardens Kew, now at Russian Academy of Sciences) have annotated most of the specimens located at five of the largest herbaria in the United States (MO, NY, G, F, and US). The majority of those specimens are annotated with five names (P. pedata, P. ternata, P. triphylla (Miq.) C. Jeffrey, P. umbrosa (Kunth) C. Jeffrey, or P. warscewiczii (Hook f.) Wunderlin), and a few with P. racemosa C. Jeffrey. Psiguria

triphylla and *P. warscewiczii* have been used most often (together making up approximately 72% of annotated specimens). It has not been clear whether this large percentage is due to their having broader geographic distributions, being more common, or being used as catchall names. The remainder of the names has been used for less than 8% of herbarium specimens, and some names have not been used on any specimen other than the type. The question has remained as to whether any of the other 11 names listed in IPNI pertain to species distinct from those six.

Past taxonomic treatments of *Psiguria* listed two species endemic to Caribbean islands: P. trifoliata (L.) Alain and P. pedata (Wunderlin, 1978; Howard, 1973). If it were confirmed that these are distinct species, many interesting biogeographical questions could be asked. These include where the genus originated, how many times and in which direction it moved between Latin America and the islands, and whether it migrated by dispersal or vicariance. The divergence of the subtribe Guraniinae from sister genus Wilbrandia is estimated to be 11 ± 3 million years ago (mya), and the split between Psiguria and Gurania is estimated to be 6 ± 3 mya (Schaefer et al., 2009). Because of the much greater age of the Caribbean islands (45-46 my) (Inturralde-Vinent and MacPhee, 1999; Graham, 2003), this timing suggests that dispersal played the major role in the distribution pattern of Psiguria, and the only question is from where dispersal occurred.

Psiguria is placed in the tribe Coniandreae, subtribe Guraniinae along with only two other genera, Gurania and Helmontia Cogn. (Jeffrey, 2005). Jeffrey (1978) contended that the integrity and distinctness of the subtribe is supported by pollen and flower morphology. Separation of *Helmontia* is based on palynological evidence (Marticorena, 1963); pollen grains of Helmontia are singular, while those of Psiguria and Gurania occur in tetrads. Additionally, Helmontia petals are white, in contrast with the brightly colored orange, red, or yellow petals of its two sister genera. Psiguria and Gurania are easily distinguished by floral morphology. In contrast to the structure and color of Psiguria flowers and leaves, Gurania flowers have bright orange, long, divided sepals and inconspicuous yellow petals, and leaves are generally pubescent and not nearly as leathery as those of Psiguria. Additionally, Gurania are found only on neotropical continents and Trinidad and Tobago (Cheesman, 1940), not in the Greater and Lesser Antilles. A familywide phylogeny of Cucurbitaceae supported the monophyly of subtribe Guraniinae, but relationships at the generic level raised doubts about the monophyly of *Psiguria* (Kocyan et al., 2007). The results of Kocyan et al. (2007) showed Helmontia embedded within *Psiguria* and *Gurania*, but taxon sampling (only two Psiguria, three Gurania, and one Helmontia) may have been insufficient to draw strong conclusions (S. Renner, Systematische Botanik, personal communication). The analysis placed subtribe Guraniinae sister to genus Wilbrandia Presl., with these, in turn, sister to Doyerea Grosourdy (Kocyan et al., 2007).

In recent years, several groups of plant scientists have been working to find a DNA region (or combination of regions) that can serve as a barcode for identifying species across flowering plants (Kress et al., 2005) or land plants (Chase et al., 2005, 2007; Kress and Erickson, 2007). A region of the mitochondrial genome (cytochrome c oxidase 1 or CO1) has been successfully used in animals for several years (e.g., Blaxter et al., 2004; Hebert et al., 2004; Hajibabaei et al., 2006; Witt et al., 2006), but

TABLE 1. Samples included in the study.

Gauss Specific-split Twe Collection (Instamm) ⁴ Dayrera emeto- carthantrica 1* Antilles non eavilable – (M) Psiguria ternata 39 Bolivia Nee 38959 (TEX) Dayrera emeto- carthantrica 3 Bolivia Nee 38959 (TEX) Psiguria ternata 40* Bolivia Nee 38959 (TEX) Guraria accuminata 3* Peru Condo P05-77 (MOVC) Psiguria triphylla 44 Costa Rica Steele 1005 (TEX) Psiguria triphylla 44* Costa Rica Steele 1056 (TEX) Guraria estentroms 5 Peru Steele 1027 (TEX) Psiguria triphylla 44* Peru Steele 1056 (TEX) Guraria sp. 9* Peru Steele 1047 (TEX) Psiguria triphylla 48* Costa Rica Steele 1056 (TEX) Guraria sp. 9* Peru Steele 1047 (TEX) Psiguria triphylla 50* Costa Rica Steele 1056 (TEX) Guraria spo			Numerical designation	in Country of	Collector and collection no.			Numerical designation in	Country of	Collector and collection no.
Doyerea emtor- carnitarica:1*Antillesnone available - (M)Psiguria Psiguriaternata39BoliviaNes 49357 (LPS)Doyerea emtor- carnitarica:2JamaicaAdams 12246 (M)Psiguria Psiguriaternata40*BoliviaNee 49357 (LPS)Guronia carnitarica:3*PenCondon P05-77 (MOVC)Psiguria Psiguriatriphylla43*Costa RicaSteele 1007 (TEX)Guronia carnitarica:5*PenCondon P05-77 (MOVC)Psiguria Psiguriatriphylla44*Costa RicaSteele 1002 (TEX)Guronia carnitafoldara7*PenSteele 1022 (TEX)Psiguria Psiguriatriphylla44*Costa RicaSteele 1032 (TEX)Guronia 	Genus	Specific-epithet	treec	collection	(herbarium) ^d	Genus	Specific-epithet	treec	collection	(herbarium) ^d
$ \begin{array}{c} carthartica \\ costa Rica \\ steele 1009 (TEX) \\ Piguria \\ riphylla \\ 44 \\ costa Rica \\ steele 1008 (TEX) \\ Piguria \\ riphylla \\ 44 \\ costa Rica \\ steele 1008 (TEX) \\ Carthartica \\ carthartica$	Doyerea	emeto-	1*	Antilles	none available – (M)	Psiguria	ternata	39	Bolivia	Nee 38959 (TEX)
Doyceaemeto- cardiarica2JannaicaAdams 12246 (M)Piguria Piguria i remata41Bolivia GuatemalaNec 47832 (NY)Guraniacostaricensis3*PeruCondon P05-77 (MOVC)Piguria Piguria i rriphylla43*Costa Rica Steele 1007 (TEX)Guraniacostaricensis4*Costa Rica Steele 1007 (TEX)Piguria Piguria i rriphylla45*PeruSteele 1008 (TEX)Guraniaeriantha5PeruSteele 1002 (TEX)Piguria Piguria i rriphylla45*PeruSteele 1005 (TEX)Guraniainsolita6PeruSteele 1045 (TEX)Piguria Piguria i rriphylla47*Steele 105 (TEX)Guraniasp.8*PeruSteele 1047 (TEX)Piguria Piguria i rriphylla47*Costa Rica Steele 105 (TEX)Guraniasp.9*PeruSteele 1047 (TEX)Piguria Piguria rriphylla50*Costa Rica Steele 1062 (TEX)Guraniasp.9*PeruSteele 1047 (TEX)Piguria Piguria rriphylla50*Costa Rica Steele 1063 (TEX)HelmontiaJeffreyi11Venezuela Steele 1033 (TX)Piguria Piguria riphylla54*Costa Rica Costa Rica Steele 1036 (TEX)Piguriapedata13*Cuba Cuba Piguria54*Costa Rica Costa Rica Costa Rica Steele 1036 (TEX)Piguriarriphylla54*Costa Rica Costa Rica Costa RicaSteele 1036 (TEX)Piguriarriphy	2	carthartica				Psiguria	ternata	40*	Bolivia	Nee 40367 (LPB)
	Doyerea	emeto-	2	Jamaica	Adams 12246 (M)	Psiguria	ternata	41	Bolivia	Nee 47832 (NY)
Gurania Gurania construcnusis3*Peru Condon P05-77 (MOVC)Priguria rriphylla47*Costa Rica Costa Rica Steele 1050 (TEX)Gurania Gurania eriantha5Peru Condon P05-40B (MOVC)Priguria rriphylla47*Costa Rica Steele 1052 (TEX)Gurania Gurania condan6PeruSteele 1042 (TEX) Priguria rriphylla47*Trinidad TrinidadSteele 1056 (TEX) Steele 1045 (TEX)Gurania Gurania sp.8*PeruSteele 1046 (TEX) Priguria rriphylla48*Costa Rica Steele 1046 (TEX) Priguria rriphylla48*Costa Rica Steele 1046 (TEX) Priguria rriphylla48*Costa Rica Steele 1046 (TEX) Priguria rriphylla50*Costa Rica Steele 1046 (TEX) Priguria rriphylla50*Ecuador Costa Rica Steele 1046 (TEX) Priguria rriphylla50*Ecuador Costa Rica Steele 1046 (TEX)Priguria Priguria r	2	carthartica				Psiguria	triphylla	42	Guatemala	Lundell 16872 (TEX)
	Gurania	acuminata	3*	Peru	Condon P05-77 (MOVC)	Psiguria	triphylla	43*	Costa Rica	Steele 1007 (TEX)
	Gurania	costaricensis	4*	Costa Rica	Steele 1009 (TEX)	Psiguria	triphylla	44*	Costa Rica	Steele 1008 (TEX)
	Gurania	eriantha	5	Peru	Condon P05-40B	Psiguria	triphylla	45*	Peru	Steele 1052 (TEX)
					(MOVC)	Psiguria	triphylla	46*	Peru	Steele 1054 (TEX)
	Gurania	insolita	6	Peru	Steele 1022 (TEX)	Psiguria	triphylla	47*	Trinidad	Steele 1056 (TEX)
	Gurania	lobata	7*	Bolivia	Steele 1045 (TEX)	Psiguria	triphylla	48*	Costa Rica	Steele 1059 (TEX)
	Gurania	sp.	8*	Peru	Steele 1046 (TEX)	Psiguria	triphylla	49*	Costa Rica	Steele 1060 (TEX)
	Gurania	sp.	9*	Peru	Steele 1047 (TEX)	Psiguria	triphylla	50*	Costa Rica	Steele 1062 (TEX)
	Gurania	sp.	10*	Peru	Steele 1048 (TEX)	Psiguria	triphylla	51*	Costa Rica	Steele 1063 (TEX)
Helmonialeptantha12GuyanaClarke 9665 (US)*Psiguriarriphylla53BrazilSterling 6217 (NY)Psiguriapedata13*CubaShafer 10523 (NY)Psiguriatriphylla55*EcuadorCosta RicaCroat 22130 (MO)Psiguriapedata14*Puetro RicoSteele 1035 (TEX)Psiguriatriphylla56*EcuadorGilbert (TEX)Psiguriapedata16*DominicanSteele 1036 (TEX)Psiguriatriphylla57GuatemalaJones 3361 (NY)Psiguriapedata16*DominicanSteele 1036 (TEX)Psiguriatriphylla59BelizeGouton 5305 (NY)Psiguriapedata17*DominicanAlain 14123 (NY)Psiguriatriphylla60*EcuadorCondon JS05-97Psiguriapedata18*DominicanAlain 17756 (NY)Psiguriatriphylla61MexicoMatinez 12486 (GH)Psiguriapedata19*Puetro RicoAlain 32529 (NY)Psiguriatriphylla63*PanamaCroat 1518 (MO)Psiguriaracemosa21*ColombiaBarriga 13400* (NY)Psiguriaumbrosa66*TrinidadSteele 1007 (TEX)Psiguriaracemosa21*ColombiaBarriga 13400* (NY)Psiguriaumbrosa66*TrinidadSteele 1005 (TEX)Psiguriaracemosa22*VenezuelaSteele 1018 (TEX)Psiguriaumbrosa66*TrinidadSteele 1005 (TEX)	Helmontia	jeffreyi	11	Venezuela	Steyermark 111716 (F) ^a	Psiguria	triphylla	52	Costa Rica	Steele 1068 (TEX)
Psiguria Psiguria pedataPedata13* 14*CubaCuba Shafer 10523 (NY) Shafer 10523 (NY) Psiguria Psiguria Psiguria pedataPsiguria pedataTriphylla Steele 1030 (TEX) Psiguria Psiguria pedataState Psiguria triphyllaCosta Rica FS* EcuadorCorat Z130 (MO) Calber (TEX) Psiguria priphyllaPsiguria pedata15*Dominican Dominican RepublicSteele 1036 (TEX) Psiguria RepublicPsiguria priphylla57Guatemala GuatemalaJones 3361 (NY) Psiguria priphyllaPsiguria pedata16*Dominican RepublicAlain 14123 (NY) RepublicPsiguria Psiguria triphylla58Guyana Guavana Gom 7305 (NY) RepublicPsiguria pedata17*Dominican RepublicAlain 1756 (NY) RepublicPsiguria Psiguria triphylla60*Ecuador Condon JS05-97 (MOVC)Psiguria pedata19*Puerto Rico Alain 32529 (NY)Psiguria Psiguria triphylla61Mexico Condon JS05-97 (MOVC)Psiguria priguria pedata19*Puerto Rico Costa Rica Haber 4860 (MO)Psiguria pria triphylla63*Panama Croat 1218 (MO)Psiguria priguria racemosa21*Colombia Steele 1018 (TEX) (MO)Psiguria pria umbrosa64* Trinidad Trinidad Steele 1016 (TEX) Psiguria umbrosa66*Trinidad Trinidad Steele 1017 (TEX) Psiguria umbrosaPsiguria racemosa22*Venezuela Steele 1018 (TEX) Psiguria (MO)Psiguria umbrosa	Helmontia	leptantha	12	Guyana	Clarke 9665 (US) ^a	Psiguria	triphylla	53	Brazil	Sterling 6217 (NY)
Psiguria Psiguriapedata14* Puerto RicoSteele 1030 (TEX) Steele 1035 (TEX)Psiguria Psiguriatriphylla psiguria55* triphyllaEcuador GuatemalaCerón 7619 (MO) Gilbert (TEX)Psiguria Psiguriapedata15*Dominican RepublicSteele 1036 (TEX)Psiguria Psiguriatriphylla56* Steele 1036 (NY)Psiguria Psiguriapedata16*Dominican RepublicSteele 1036 (TEX)Psiguria Psiguriatriphylla59 PsiguriaBelize Gentle 5469 (TEX)Psiguria Psiguria Psiguriapedata17*Dominican Alain 14123 (NY)Psiguria Psiguria riphylla60* Psiguria friphylla60* Condon 1505-97 (MOVC)Psiguria Psiguria Psiguria pedata19*Dominican RepublicAlain 32529 (NY)Psiguria Psiguria pedata11*Mexico Costa Rica Haber 4860 (MO)Psiguria Psiguria umbrosa61 Hamana Croat 1518 (MO)Psiguria Psiguria racemosa21* Costa RicaColombia Barriga 13400° (NY)Psiguria Psiguria umbrosa65* HaidaTrinidad Howman 8512 (MO)Psiguria racemosa23* VenezuelaSteefe 1018 (TEX) Steyermark 88837 (NY)Psiguria Psiguria umbrosa67* HaidaSteele 1065 (TEX)Psiguria racemosa24 Colombia Romero 9685 (MO)Psiguria Psiguria umbrosa68* HaidaSteele 1005 (TEX)Psiguria racemosa24 Colombia Romero 9685 (MO)Psiguria Psiguria umbrosa69* HaidaHow	Psiguria	pedata	13*	Cuba	Shafer 10523 (NY)	Psiguria	triphylla	54*	Costa Rica	Croat 22130 (MO)
Psiguriapedata15*DominicanSteele 1035 (TEX) RepublicPsiguriatriphylla56*EcuadorGilbert (TEX) GuatemalaPsiguriapedata16*DominicanSteele 1036 (TEX) RepublicPsiguriatriphylla57GuatemalaJones 3361 (NY)Psiguriapedata16*DominicanAlain 14123 (NY) RepublicPsiguriatriphylla59BelizeGentle 5469 (TEX) GuyanaPsiguriapedata17*DominicanAlain 14123 (NY) RepublicPsiguriatriphylla61MexicoMartinez 12486 (GH) MoVC)Psiguriapedata19*Puerto RicoAlain 32529 (NY)Psiguriatriphylla63*PanamaCroat 1518 (MO)Psiguriapedata19*Puerto RicoAlain 32529 (NY)Psiguriaumbrosa64TrinidadSteele 1002 (TEX)Psiguriapedata20Costa RicaHaber 4860 (MO)Psiguriaumbrosa65TrinidadSteele 1002 (TEX)Psiguriaracemosa21*ColombiaBarriga 13400° (NY)Psiguriaumbrosa66*St. LuciaHoward 19874 (GH)Psiguriaracemosa23VenezuelaSteele 1018 (TEX)Psiguriaumbrosa68*St. LuciaHoward 19874 (GH)Psiguriaracemosa24ColombiaRomero 9685 (MO)Psiguriaumbrosa69VenezuelaEery 3789 (MO)Psiguriaracemosa25VenezuelaSteele 1036 (TEX)Psiguria <td>Psiguria</td> <td>pedata</td> <td>14*</td> <td>Puerto Rico</td> <td>Steele 1030 (TEX)</td> <td>Psiguria</td> <td>triphylla</td> <td>55*</td> <td>Ecuador</td> <td>Cerón 7619 (MO)</td>	Psiguria	pedata	14*	Puerto Rico	Steele 1030 (TEX)	Psiguria	triphylla	55*	Ecuador	Cerón 7619 (MO)
RepublicPsiguria $triphylla$ 57GuatemalaJones 3361 (NY)Psiguria $pedata$ 16*DominicanSteele 1036 (TEX)Psiguria $triphylla$ 58GuyanaBoom 7305 (NY)Psiguria $pedata$ 17*DominicanAlain 14123 (NY)Psiguria $triphylla$ 60*EcuadorCondon JS05-97Psiguria $pedata$ 18*DominicanAlain 17756 (NY)Psiguria $triphylla$ 61MexicoMartinez 12486 (GH)Psiguria $pedata$ 19*Puerto RicoPsiguria $triphylla$ 63*PanamaCroat 1518 (MO)Psiguria $pedata$ 19*Puerto RicoAlain 2529 (NY)Psiguria $umbrosa$ 64TrinidadSteele 1002 (TEX)Psiguria $pedata$ 20Costa RicaHaber 4860 (MO)Psiguria $umbrosa$ 65TrinidadSteele 1002 (TEX)Psiguria $racemosa$ 21*ColombiaBartiga 13400° (NY)Psiguria $umbrosa$ 66*St. LuciaHoward 19874 (GH)Psiguria $racemosa$ 23VenezuelaSteejermark 120279Psiguria $umbrosa$ 67*BrazilPlowma 8512 (MO)Psiguria $racemosa$ 24ColombiaRomero 9685 (MO)Psiguria $warscewiczii$ 70*GuatemalaContreras 8809 (TEX)Psiguria $racemosa$ 25VenezuelaSteyermark 8837 (NY)Psiguria $warscewiczii$ 71*PanamaHammel 3218 (MO)Psiguria $racemosa$ 24	Psiguria	pedata	15*	Dominican	Steele 1035 (TEX)	Psiguria	triphylla	56*	Ecuador	Gilbert (TEX)
Psiguriapedata16*Dominican RepublicSteele 1036 (TEX)Psiguria Psiguriatriphylla58GuyanaBoom 7305 (NY) BelizePsiguriapedata17*Dominican RepublicAlain 14123 (NY)Psiguria triphyllaforGentle 5469 (TEX) Gentle 5469 (TEX)Psiguriapedata18*Dominican RepublicAlain 17756 (NY)Psiguria triphyllaforMexicoMartinez 12486 (GH) Martinez 12486 (GH)Psiguriapedata19*Pueto RicoAlain 32529 (NY)Psiguria triphyllaforforMexicoMartinez 12486 (GH) MoVC)Psiguriapedata20Costa Rica Haber 4860 (MO)Psiguria triphyllafor <td></td> <td></td> <td></td> <td>Republic</td> <td></td> <td>Psiguria</td> <td>triphylla</td> <td>57</td> <td>Guatemala</td> <td>Jones 3361 (NY)</td>				Republic		Psiguria	triphylla	57	Guatemala	Jones 3361 (NY)
Psiguriapedata17*Dominican Dominican RepublicAlain 14123 (NY) PsiguriaPsiguria triphyllatriphylla59Belize Gentle 5469 (TEX) Gondon JSOS-97 (MOVC)Psiguriapedata18*Dominican RepublicAlain 17756 (NY) RepublicPsiguria triphylla61MexicoMartinez 12486 (GH) Martinez 12486 (GH)Psiguriapedata19*Puerto Rico Alain 32529 (NY)Psiguria triphylla61MexicoMartinez 12486 (GH) Martinez 12486 (GH)Psiguriapedata19*Puerto Rico Alain 32529 (NY)Psiguria triphylla63*Panama Gont 12218 (MO)Psiguriapedata20Costa Rica take 4860 (MO)Psiguria tumbrosa64Trinidad Trinidad Steele 1007 (TEX)Psiguria racemosa21*Colombia tariga 13400* (NY)Psiguria tumbrosaumbrosa65*Trinidad trinidad Steele 1017 (TEX)Psiguria racemosa22*Venezuela to Romero 9685 (MO)Psiguria tumbrosaumbrosa66*St. Lucia tumbrosaHoward 19874 (GH)Psiguria racemosa25Venezuela triphyllaSteele 003 (TEX)Psiguria tumbrosa69Venezuela teras 8809 (TEX)Psiguria racemosa25Venezuela triphyllaSteele 0685 (MO)Psiguria tumbrosa69Venezuela teras 8809 (TEX)Psiguria racemosa27MexicoSteele 1038 (TEX)Psiguria tumbrosa69Venezuela teras 8809 (TEX)Psiguria racemosa <td>Psiguria</td> <td>pedata</td> <td>16*</td> <td>Dominican</td> <td>Steele 1036 (TEX)</td> <td>Psiguria</td> <td>triphylla</td> <td>58</td> <td>Guyana</td> <td>Boom 7305 (NY)</td>	Psiguria	pedata	16*	Dominican	Steele 1036 (TEX)	Psiguria	triphylla	58	Guyana	Boom 7305 (NY)
Psiguriapedata17*Dominican RepublicAlain 14123 (NY) RepublicPsiguria triphyllatriphylla60*Ecuador (MOVC)Condon JS05-97 (MOVC)Psiguriapedata18*Dominican RepublicAlain 17756 (NY)Psiguria triphylla61MexicoMatrinez 12486 (GH)Psiguriapedata19*Puerto Rico Alain 32529 (NY)Psiguria triphylla63*Panama PanamaCroat 12218 (MO)Psiguriapedata20Costa Rica take 1000 (MO)Haber 4860 (MO)Psiguria umbrosa64Trinidad Steele 1017 (TEX)Psiguriaracemosa21*Colombia Barriga 13400 ⁶ (NY)Psiguria umbrosaumbrosa65*Trinidad Trinidad Steele 1005 (TEX)Psiguria racemosa22*Venezuela VenezuelaSteele 1018 (TEX)Psiguria umbrosa66*St. Lucia Howman 8512 (MO) Psiguria umbrosa66*St. Lucia Howman 8512 (MO)Psiguria racemosa24Colombia Romero 9685 (MO)Psiguria varscewicziimbrosa69Venezuela Rery 3789 (MO)Psiguria racemosa25Venezuela Steyermark 88837 (NY)Psiguria warscewiczii70*Guatemala Costa RicaSteele 1006 (TEX)Psiguria rain rapiguriarriphylla27MexicoSteele 1038 (TEX)Psiguria warscewiczii71*Panama PanamaHammel 3218 (MO)Psiguria rain rain178% racemosa28*MexicoSteele 1038 (TEX)Psiguria warscewiczii				Republic		Psiguria	triphylla	59	Belize	Gentle 5469 (TEX)
Psiguriapedata18*Dominican RepublicAlain 17756 (NY) RepublicPsiguria Psiguriatriphylla61MexicoMartinez 12486 (GH) PanamaPsiguriapedata19*Puerto RicoAlain 32529 (NY)Psiguria Psiguriatriphylla63*PanamaCroat 12218 (MO) Croat 16518 (MO)Psiguriaracemosa21*ColombiaBarriga 13400 ^b (NY)Psiguria Psiguriaumbrosa65TrinidadSteele 1002 (TEX) PsiguriaPsiguriaracemosa22*VenezuelaSteele 1018 (TEX)Psiguria Umbrosambrosa66*TrinidadSteele 1065 (TEX) Plowman 8512 (MO)Psiguriaracemosa23VenezuelaSteyemark 120279Psiguria Umbrosaumbrosa68*St. LuciaHoward 19874 (GH)Psiguriaracemosa24ColombiaRomero 9685 (MO)Psiguria UmbrosaPsiguria warscewiczii70*GuatemalaContreras 8809 (TEX)Psiguriaracemosa25VenezuelaSteyermark 88837 (NY)Psiguria warscewicziimarana warscewiczii71*Panama PanamaContreras 8809 (TEX)Psiguriatriphylla27*MexicoDillon 1780 (TEX)Psiguria warscewiczii72*Costa RicaSteele 1006 (TEX)Psiguriatriphylla28*MexicoSteele 1038 (TEX)Psiguria warscewiczii73*BelizeSteele 1061 (TEX)Psiguriatriphylla29*MexicoSteele 1038 (TEX)Psiguria warscewiczii	Psiguria	pedata	17*	Dominican Republic	Alain 14123 (NY)	Psiguria	triphylla	60*	Ecuador	Condon JS05-97 (MOVC)
RepublicRepublicPriguriaPriguri	Psiguria	pedata	18*	Dominican	Alain 17756 (NY)	Psiguria	triphylla	61	Mexico	Martinez 12486 (GH)
Psiguriapedata19*Puerto RicoAlain 32529 (NY)PsiguriaPsiguriatriphylla63*PanamaCroat 16518 (MO)Psiguriapedata20Costa RicaHaber 4860 (MO)Psiguriaumbrosa64TrinidadSteele 1002 (TEX)Psiguriaracemosa21*ColombiaBarriga 13400° (NY)Psiguriaumbrosa65TrinidadSteele 1017 (TEX)Psiguriaracemosa22*VenezuelaSteele 1018 (TEX)Psiguriaumbrosa66*TrinidadSteele 1065 (TEX)Psiguriaracemosa23VenezuelaSteyermark 120279Psiguriaumbrosa67*BrazilHowand 19874 (GH)Psiguriaracemosa25VenezuelaSteyermark 120279Psiguriaumbrosa69VenezuelaBerry 3789 (MO)Psiguriaracemosa25VenezuelaSteyermark 8837 (NY)Psiguriawarscewiczii70*GuatemalaConteras 8809 (TEX)Psiguriariphylla27MexicoDillon 1780 (TEX)Psiguriawarscewiczii73*BelizeSteele 1006 (TEX)Psiguriatriphylla28*MexicoSteele 1003 (TEX)Psiguriawarscewiczii73*BelizeSteele 1061 (TEX)Psiguriatriphylla29*MexicoSteele 1038 (TEX)Psiguriawarscewiczii74*BelizeSteele 1064 (TEX)Psiguriatriphylla30MexicoSteele 1038 (TEX)Psiguriawarscewiczii75*Costa Ri		P		Republic		Psiguria	triphylla	62*	Panama	Croat 12218 (MO)
Psiguriapedata20Costa RicaHaber 4860 (MO)PsiguriaumprovideGosta RicaTrinidadSteele 10102 (TEX)Psiguriaracemosa21*ColombiaBarriga 13400 ^b (NY)Psiguriaumbrosa64TrinidadSteele 1017 (TEX)Psiguriaracemosa22*VenezuelaSteele 1018 (TEX)Psiguriaumbrosa66*TrinidadSteele 1002 (TEX)Psiguriaracemosa22*VenezuelaSteele 1018 (TEX)Psiguriaumbrosa66*TrinidadSteele 1005 (TEX)Psiguriaracemosa23VenezuelaSteyermark 120279Psiguriaumbrosa67*BrazilPlowman 8512 (MO)Psiguriaracemosa24ColombiaRomero 9685 (MO)Psiguriaumbrosa69VenezuelaBerry 378 (MO)Psiguriaracemosa25VenezuelaSteyermark 88837 (NY)Psiguriawarscewiczii70*GuatemalaContreras 8809 (TEX)Psiguriariphylla27MexicoDillon 1780 (TEX)Psiguriawarscewiczii71PanamaHammel 3218 (MO)Psiguriatriphylla28*MexicoSteele 1004 (TEX)Psiguriawarscewiczii73*BelizeSteele 1061 (TEX)Psiguriatriphylla29*MexicoSteele 1058 (TEX)Psiguriawarscewiczii74*BelizeSteele 1064 (TEX)Psiguriatriphylla30MexicoSteele 1058 (TEX)Psiguriawarscewiczii76*Colombia	Psiguria	pedata	19*	Puerto Rico	Alain 32529 (NY)	Psiguria	triphylla	63*	Panama	Croat 16518 (MO)
Psiguria Psiguria racemosa21*Colombia ColombiaBarriga 13400 ^b (NY) (NY)Psiguria Psiguria (MO)Immosa 	Psiguria	pedata	20	Costa Rica	Haber 4860 (MO)	Psiguria	umbrosa	64	Trinidad	Steele 1002 (TEX)
Psiguriaracemosa22*VenezuelaSteele 1018 (TEX)Psiguriaumbrosa66*TrinidadSteele 1015 (TEX)Psiguriaracemosa23VenezuelaSteele 1018 (TEX)Psiguriaumbrosa67*BrazilPlowman 8512 (MO)Psiguriaracemosa24ColombiaRomero 9685 (MO)Psiguriaumbrosa68*St. LuciaHoward 19874 (GH)Psiguriaracemosa25VenezuelaSteyermark 120279Psiguriaumbrosa69VenezuelaBerry 3789 (MO)Psiguriaracemosa25VenezuelaSteyermark 88837 (NY)Psiguriawarscewiczii70*GuatemalaContreras 8809 (TEX)Psiguriaracemosa25VenezuelaSteyermark 88837 (NY)Psiguriawarscewiczii71PanamaHammel 3218 (MO)Psiguriatriphylla27MexicoDillon 1780 (TEX)Psiguriawarscewiczii72*Costa RicaSteele 1006 (TEX)Psiguriatriphylla28*MexicoSteele 1038 (TEX)Psiguriawarscewiczii74BelizeSteele 1061 (TEX)Psiguriatriphylla30MexicoSteele 1058 (TEX)Psiguriawarscewiczii75*Costa RicaSteele 1064 (TEX)Psiguriatriphylla31*MexicoAbbott 23877 (FLAS)Psiguriawarscewiczii76*ColombiaCallejas 2271 (NY)Psiguriaternata33*PeruSteele 1039 (TEX)Psiguriawarscewiczii77*Cost	Psiguria	racemosa	21*	Colombia	Barriga 13400 ^b (NY)	Psiguria	umbrosa	65	Trinidad	Steele 1017 (TEX)
Psiguriaracemosa23VenezuelaSteyermarkSteyermark120279 (MO)PsiguriaImmonosa67*BrazilPlowman 8512 (MO)Psiguriaracemosa24ColombiaRomero 9685 (MO)Psiguriaumbrosa68*St. LuciaHoward 19874 (GH)Psiguriaracemosa25VenezuelaSteyermark 88837 (NY)Psiguriaumbrosa69VenezuelaBerry 3789 (MO)Psiguriasp.26BrazilNoblick 3356 (MO)Psiguriawarscewiczii71PanamaHammel 3218 (MO)Psiguriatriphylla27MexicoDillon 1780 (TEX)Psiguriawarscewiczii72*Costa RicaSteele 1006 (TEX)Psiguriatriphylla28*MexicoSteele 1004 (TEX)Psiguriawarscewiczii74*BelizeSteele 1055 (TEX)Psiguriatriphylla29*MexicoSteele 1038 (TEX)Psiguriawarscewiczii75*Costa RicaSteele 1064 (TEX)Psiguriatriphylla30MexicoSteele 1058 (TEX)Psiguriawarscewiczii76*ColombiaCallejas 2271 (NY)Psiguriatriphylla31*MexicoAbbott 23877 (FLAS)Psiguriawarscewiczii77*Costa RicaSteele 1064 (TEX)Psiguriaternata33*PeruSteele 1039 (TEX)Psiguriawarscewiczii77*Costa RicaHammel 20374 (MO)Psiguriaternata35*BoliviaSteele 1040 (TEX)Psiguriawarscewicz	Psiguria	racemosa	22*	Venezuela	Steele 1018 (TEX)	Psiguria	umbrosa	66*	Trinidad	Steele 1065 (TEX)
O(MO)PriguriaInnovation68*St. LuciaHoward 19874 (GH)Psiguriaracemosa24ColombiaRomero 9685 (MO)Psiguriaumbrosa69VenezuelaBerry 3789 (MO)Psiguriaracemosa25VenezuelaSteyermark 88837 (NY)Psiguriaumbrosa69VenezuelaBerry 3789 (MO)Psiguriasp.26BrazilNoblick 3356 (MO)Psiguriawarscewiczii71PanamaHammel 3218 (MO)Psiguriatriphylla27MexicoDillon 1780 (TEX)Psiguriawarscewiczii72*Costa RicaSteele 1006 (TEX)Psiguriatriphylla29*MexicoSteele 1004 (TEX)Psiguriawarscewiczii73*BelizeSteele 1055 (TEX)Psiguriatriphylla29*MexicoSteele 1058 (TEX)Psiguriawarscewiczii75*Costa RicaSteele 1061 (TEX)Psiguriatriphylla31*MexicoAbbott 23877 (FLAS)Psiguriawarscewiczii75*Costa RicaSteele 1061 (TEX)Psiguriatriphylla31*MexicoTorres 3281 (MO)Psiguriawarscewiczii77*Costa RicaHammel 20374 (MO)Psiguriaternata33*PeruSteele 1039 (TEX)Psiguriawarscewiczii78*GuatemalaContreras 6339 (TEX)Psiguriaternata35*BoliviaSteele 1040 (TEX)Psiguriawarscewiczii78*GuatemalaContreras 6339 (TEX)Psiguriat	Psiguria	racemosa	23	Venezuela	Stevermark 120279	Psiguria	umbrosa	67*	Brazil	Plowman 8512 (MO)
Psiguriaracemosa24ColombiaRomero 9685 (MO)Psiguriaumbrosa69VenezuelaBerry 3789 (MO)Psiguriaracemosa25VenezuelaSteyermark 88837 (NY)Psiguriaumbrosa69VenezuelaBerry 3789 (MO)Psiguriasp.26BrazilNoblick 3356 (MO)Psiguriawarscewiczii71PanamaHammel 3218 (MO)Psiguriatriphylla27MexicoDillon 1780 (TEX)Psiguriawarscewiczii72*Costa RicaSteele 1006 (TEX)Psiguriatriphylla28*MexicoSteele 1038 (TEX)Psiguriawarscewiczii73*BelizeSteele 1055 (TEX)Psiguriatriphylla29*MexicoSteele 1058 (TEX)Psiguriawarscewiczii75*Costa RicaSteele 1061 (TEX)Psiguriatriphylla30MexicoSteele 1058 (TEX)Psiguriawarscewiczii75*Costa RicaSteele 1061 (TEX)Psiguriatriphylla31*MexicoAbbott 23877 (FLAS)Psiguriawarscewiczii77*Costa RicaSteele 1064 (TEX)Psiguriatriphylla32*MexicoTorres 3281 (MO)Psiguriawarscewiczii77*Costa RicaHammel 20374 (MO)Psiguriaternata33*PeruSteele 1039 (TEX)Psiguriawarscewiczii78*GuatemalaContreras 6339 (TEX)Psiguriaternata35*BoliviaSteele 1040 (TEX)Psiguriawarscewiczii78*Guatema	0				(MO)	Psiguria	umbrosa	68*	St. Lucia	Howard 19874 (GH)
Psiguriaracemosa25VenezuelaSteyermark 88837 (NY)PsiguriaWarscewiczii70*GuatemalaContreras 8809 (TEX)Psiguriasp.26BrazilNoblick 3356 (MO)Psiguriawarscewiczii71PanamaHammel 3218 (MO)Psiguriatriphylla27MexicoDillon 1780 (TEX)Psiguriawarscewiczii72*Costa RicaSteele 1006 (TEX)Psiguriatriphylla28*MexicoSteele 1004 (TEX)Psiguriawarscewiczii73*BelizeSteele 1005 (TEX)Psiguriatriphylla29*MexicoSteele 1038 (TEX)Psiguriawarscewiczii74BelizeSteele 1061 (TEX)Psiguriatriphylla30MexicoSteele 1058 (TEX)Psiguriawarscewiczii75*Costa RicaSteele 1064 (TEX)Psiguriatriphylla31*MexicoAbbott 23877 (FLAS)Psiguriawarscewiczii76*ColombiaCallejas 2271 (NY)Psiguriaternata33*PeruSteele 1039 (TEX)Psiguriawarscewiczii78*GuatemalaContreras 6339 (TEX)Psiguriaternata34*BoliviaSteele 1040 (TEX)Psiguriawarscewiczii78*GuatemalaContreras 6339 (TEX)Psiguriaternata35*BoliviaSteele 1040 (TEX)Psiguriawarscewiczii78*GuatemalaContreras 6339 (TEX)Psiguriaternata35*BoliviaSteele 1040 (TEX)Psiguriawarscewiczii7	Psiguria	racemosa	24	Colombia	Romero 9685 (MO)	Psiguria	umbrosa	69	Venezuela	Berry 3789 (MO)
Psiguriasp.26BrazilNoblick 3356 (MO)Psiguriawarscewiczii71PanamaHammel 3218 (MO)Psiguriatriphylla27MexicoDillon 1780 (TEX)Psiguriawarscewiczii72*Costa RicaSteele 1006 (TEX)Psiguriatriphylla28*MexicoSteele 1004 (TEX)Psiguriawarscewiczii73*BelizeSteele 1006 (TEX)Psiguriatriphylla29*MexicoSteele 1038 (TEX)Psiguriawarscewiczii74BelizeSteele 1061 (TEX)Psiguriatriphylla30MexicoSteele 1058 (TEX)Psiguriawarscewiczii75*Costa RicaSteele 1064 (TEX)Psiguriatriphylla31*MexicoAbbott 23877 (FLAS)Psiguriawarscewiczii76*ColombiaCallejas 2271 (NY)Psiguriatriphylla32*MexicoTorres 3281 (MO)Psiguriawarscewiczii77*Costa RicaHammel 20374 (MO)Psiguriaternata33*PeruSteele 1039 (TEX)Psiguriawarscewiczii78*GuatemalaContreras 639 (TEX)Psiguriaternata35*BoliviaSteele 1040 (TEX)Psiguriawarscewiczii79*HondurasPoole 1167 (TEX)Psiguriaternata36*BrazilSteele 1066 (TEX)Psiguriawarscewiczii80*HondurasMolina 32001 (MO)Psiguriaternata36*BrazilSteele 1066 (TEX)Psiguriawarscewiczii81*Mexico <td>Psiguria</td> <td>racemosa</td> <td>25</td> <td>Venezuela</td> <td>Stevermark 88837 (NY)</td> <td>Psiguria</td> <td>warscewiczii</td> <td>70*</td> <td>Guatemala</td> <td>Contreras 8809 (TEX)</td>	Psiguria	racemosa	25	Venezuela	Stevermark 88837 (NY)	Psiguria	warscewiczii	70*	Guatemala	Contreras 8809 (TEX)
Psiguriatriphylla27MexicoDillon 1780 (TEX)Psiguriawarscewiczii72*Costa RicaSteele 1006 (TEX)Psiguriatriphylla28*MexicoSteele 1004 (TEX)Psiguriawarscewiczii73*BelizeSteele 1005 (TEX)Psiguriatriphylla29*MexicoSteele 1038 (TEX)Psiguriawarscewiczii74BelizeSteele 1061 (TEX)Psiguriatriphylla30MexicoSteele 1058 (TEX)Psiguriawarscewiczii75*Costa RicaSteele 1064 (TEX)Psiguriatriphylla31*MexicoAbbott 23877 (FLAS)Psiguriawarscewiczii76*ColombiaCallejas 2271 (NY)Psiguriatriphylla32*MexicoTorres 3281 (MO)Psiguriawarscewiczii77*Costa RicaHammel 20374 (MO)Psiguriaternata33*PeruSteele 1039 (TEX)Psiguriawarscewiczii78*GuatemalaContrens 6339 (TEX)Psiguriaternata34*BoliviaSteele 1040 (TEX)Psiguriawarscewiczii79*HondurasPoole 1167 (TEX)Psiguriaternata36*BrazilSteele 1066 (TEX)Psiguriawarscewiczii80*HondurasMolina 32001 (MO)Psiguriaternata36*BrazilSteele 1066 (TEX)Psiguriawarscewiczii81*MexicoMattine 26070 (MO)Psiguriaternata37*BoliviaRivero 244 (LPB)Psiguriawarscewiczii82*P	Psiguria	sp.	26	Brazil	Noblick 3356 (MO)	Psiguria	warscewiczii	71	Panama	Hammel 3218 (MO)
Psiguriatriphylla28*MexicoSteele 1004 (TEX)Psiguriawarscewiczii73*BelizeSteele 1055 (TEX)Psiguriatriphylla29*MexicoSteele 1038 (TEX)Psiguriawarscewiczii74BelizeSteele 1061 (TEX)Psiguriatriphylla30MexicoSteele 1058 (TEX)Psiguriawarscewiczii75*Costa RicaSteele 1064 (TEX)Psiguriatriphylla31*MexicoAbbott 23877 (FLAS)Psiguriawarscewiczii76*ColombiaCallejas 2271 (NY)Psiguriatriphylla32*MexicoTorres 3281 (MO)Psiguriawarscewiczii77*Costa RicaHammel 20374 (MO)Psiguriaternata33*PeruSteele 1039 (TEX)Psiguriawarscewiczii78*GuatemalaContreras 6339 (TEX)Psiguriaternata34*BoliviaSteele 1040 (TEX)Psiguriawarscewiczii79*HondurasPoole 1167 (TEX)Psiguriaternata35*BoliviaSteele 1043 (TEX)Psiguriawarscewiczii80*HondurasMolina 32001 (MO)Psiguriaternata36*BrazilSteele 1066 (TEX)Psiguriawarscewiczii81*MexicoMartínez 26070 (MO)Psiguriaternata37*BoliviaRivero 244 (LPB)Psiguriawarscewiczii82*PanamaCroat 8499 (MO)Psiguriaternata38*BoliviaNee 3826 (LPB)WillomadiaBrazetaata83Parcemay	Psiguria	triphylla	27	Mexico	Dillon 1780 (TEX)	Psiguria	warscewiczii	72*	Costa Rica	Steele 1006 (TEX)
Psiguriatriphylla29*MexicoSteele 1038 (TEX)Psiguriawarscewiczii74BelizeSteele 1061 (TEX)Psiguriatriphylla30MexicoSteele 1058 (TEX)Psiguriawarscewiczii75*Costa RicaSteele 1064 (TEX)Psiguriatriphylla31*MexicoAbbott 23877 (FLAS)Psiguriawarscewiczii76*ColombiaCallejas 2271 (NY)Psiguriatriphylla32*MexicoTorres 3281 (MO)Psiguriawarscewiczii77*Costa RicaHammel 20374 (MO)Psiguriaternata33*PeruSteele 1039 (TEX)Psiguriawarscewiczii78*GuatemalaContreras 6339 (TEX)Psiguriaternata34*BoliviaSteele 1040 (TEX)Psiguriawarscewiczii79*HondurasPoole 1167 (TEX)Psiguriaternata35*BoliviaSteele 1043 (TEX)Psiguriawarscewiczii80*HondurasMolina 32001 (MO)Psiguriaternata36*BrazilSteele 1066 (TEX)Psiguriawarscewiczii81*MexicoMartínez 26070 (MO)Psiguriaternata37*BoliviaRivero 244 (LPB)Psiguriawarscewiczii82*PanamaCroatesta 99 (MO)Psiguriaternata38*BoliviaNee, 3826 (LPB)Willpradiawarscewiczii81*MexicoMartínez 499 (MO)	Psiguria	triphylla	28*	Mexico	Steele 1004 (TEX)	Psiguria	warscewiczii	73*	Belize	Steele 1055 (TEX)
Psiguriatriphylla30MexicoSteele 1058 (TEX)Psiguriawarscewiczii75*Costa RicaSteele 1064 (TEX)Psiguriatriphylla31*MexicoAbbott 23877 (FLAS)Psiguriawarscewiczii76*ColombiaCallejas 2271 (NY)Psiguriatriphylla32*MexicoTorres 3281 (MO)Psiguriawarscewiczii77*Costa RicaHammel 20374 (MO)Psiguriaternata33*PeruSteele 1039 (TEX)Psiguriawarscewiczii78*GuatemalaContreras 6339 (TEX)Psiguriaternata34*BoliviaSteele 1040 (TEX)Psiguriawarscewiczii79*HondurasPoole 1167 (TEX)Psiguriaternata35*BoliviaSteele 1043 (TEX)Psiguriawarscewiczii80*HondurasMolina 32001 (MO)Psiguriaternata36*BrazilSteele 1066 (TEX)Psiguriawarscewiczii81*MexicoMartínez 26070 (MO)Psiguriaternata37*BoliviaRivero 244 (LPB)Psiguriawarscewiczii82*PanamaCroat 8499 (MO)Psiguriaternata38*BoliviaNee, 33826 (LPB)WillpradiaByractarta83PoremucyWorston 980 (MV)	Psiguria	triphylla	29*	Mexico	Steele 1038 (TEX)	Psiguria	warscewiczii	74	Belize	Steele 1061 (TEX)
Psiguriatriphylla31*MexicoAbbott 23877 (FLAS)Psiguriawarscewiczii76*ColombiaCallejas 2271 (NY)Psiguriatriphylla32*MexicoTorres 3281 (MO)Psiguriawarscewiczii77*Costa RicaHammel 20374 (MO)Psiguriaternata33*PeruSteele 1039 (TEX)Psiguriawarscewiczii78*GuatemalaContreras 6339 (TEX)Psiguriaternata34*BoliviaSteele 1040 (TEX)Psiguriawarscewiczii79*HondurasPoole 1167 (TEX)Psiguriaternata35*BoliviaSteele 1043 (TEX)Psiguriawarscewiczii80*HondurasMolina 32001 (MO)Psiguriaternata36*BrazilSteele 1066 (TEX)Psiguriawarscewiczii81*MexicoMartínez 26070 (MO)Psiguriaternata37*BoliviaRivero 244 (LPB)Psiguriawarscewiczii82*PanamaCroat 8499 (MO)Psiguriaternata38*BoliviaNee, 3826 (LPB)WillbradiaBarcetara83PoremusWorston 980 (MV)	Psiguria	triphylla	30	Mexico	Steele 1058 (TEX)	Psiguria	warscewiczii	75*	Costa Rica	Steele 1064 (TEX)
Psiguriatriphylla32*MexicoTorres 3281 (MO)Psiguriawarscewiczii77*Costa RicaHammel 20374 (MO)Psiguriaternata33*PeruSteele 1039 (TEX)Psiguriawarscewiczii78*GuatemalaContreras 6339 (TEX)Psiguriaternata34*BoliviaSteele 1040 (TEX)Psiguriawarscewiczii79*HondurasPoole 1167 (TEX)Psiguriaternata35*BoliviaSteele 1043 (TEX)Psiguriawarscewiczii80*HondurasMolina 32001 (MO)Psiguriaternata36*BrazilSteele 1066 (TEX)Psiguriawarscewiczii81*MexicoMartínez 26070 (MO)Psiguriaternata37*BoliviaRivero 244 (LPB)Psiguriawarscewiczii82*PanamaCroat 8499 (MO)Psiguriaternata38*BoliviaNee, 3826 (LPB)WillbradiaBarcetara83PoremusyWooston 980 (MV)	Psiguria	triphylla	31*	Mexico	Abbott 23877 (FLAS)	Psiguria	warscewiczii	76*	Colombia	Callejas 2271 (NY)
Psiguriaternata33*PeruSteele 1039 (TEX)Psiguriawarscewiczii78*GuatemalaContreras 6339 (TEX)Psiguriaternata34*BoliviaSteele 1040 (TEX)Psiguriawarscewiczii79*HondurasPoole 1167 (TEX)Psiguriaternata35*BoliviaSteele 1043 (TEX)Psiguriawarscewiczii80*HondurasMolina 32001 (MO)Psiguriaternata36*BrazilSteele 1066 (TEX)Psiguriawarscewiczii81*MexicoMartínez 26070 (MO)Psiguriaternata37*BoliviaRivero 244 (LPB)Psiguriawarscewiczii82*PanamaCroat 8499 (MO)Psiguriaternata38*BoliviaNee 3826 (LPB)Willbractaria83PoremusyWooston 980 (NV)	Psiguria	triphylla	32*	Mexico	Torres 3281 (MO)	Psiguria	warscewiczii	77*	Costa Rica	Hammel 20374 (MO)
Psiguriaternata34*BoliviaSteele 1040 (TEX)Psiguriawarscewiczii79*HondurasPoole 1167 (TEX)Psiguriaternata35*BoliviaSteele 1043 (TEX)Psiguriawarscewiczii80*HondurasMolina 32001 (MO)Psiguriaternata36*BrazilSteele 1066 (TEX)Psiguriawarscewiczii81*MexicoMartínez 26070 (MO)Psiguriaternata37*BoliviaRivero 244 (LPB)Psiguriawarscewiczii82*PanamaCroat 8499 (MO)Psiguriaternata38*BoliviaNee 33826 (LPB)WilbrandiaBrazula 2007 (MO)WilbrandiaRivero 240 (NV)	Psiguria	ternata	33*	Peru	Steele 1039 (TEX)	Psiguria	warscewiczii	78*	Guatemala	Contreras 6339 (TEX)
Psiguriaternata35*BoliviaSteele 1043 (TEX)Psiguriawarscewiczii80*HondurasMolina 32001 (MO)Psiguriaternata36*BrazilSteele 1066 (TEX)Psiguriawarscewiczii81*MexicoMartínez 26070 (MO)Psiguriaternata37*BoliviaRivero 244 (LPB)Psiguriawarscewiczii82*PanamaCroat 8499 (MO)Psiguriaternata38*BoliviaNee 33826 (LPB)WilbrandiaBaracteata83ParemayWooston 980 (NV)	Psiguria	ternata	34*	Bolivia	Steele 1040 (TEX)	Psiguria	warscewiczii	79*	Honduras	Poole 1167 (TEX)
Psiguriaternata36*BrazilSteele 1066 (TEX)Psiguriawarscewiczii81*MexicoMartínez 26070 (MO)Psiguriaternata37*BoliviaRivero 244 (LPB)Psiguriawarscewiczii82*PanamaCroat 8499 (MO)Psiguriaternata38*BoliviaNee 33826 (LPB)WilbrandiaBaracteata83ParamayWooston 980 (NV)	Psiguria	ternata	35*	Bolivia	Steele 1043 (TEX)	Psiguria	warscewiczii	80*	Honduras	Molina 32001 (MO)
Psiguria ternata 37* Bolivia Rivero 244 (LPB) Psiguria warscewiczii 82* Panama Croat 8499 (MO) Psiguria ternata 38* Bolivia Nee 33826 (LPB) Wilbrandia Baracteata 83 Paramay Wooston 980 (NV)	Psiguria	ternata	36*	Brazil	Steele 1066 (TEX)	Psiguria	warscewiczii	81*	Mexico	Martínez 26070 (MO)
Psiguria ternata 38* Bolivia Nee 33826 (LPB) Wilhrandia ebracteata 83 Deraguay Wooston 080 (NV)	Psiguria	ternata	37*	Bolivia	Rivero 244 (LPB)	Psiguria	warscewiczii	82*	Panama	Croat 8499 (MO)
viibrana co borna (100 55020 (11 b) viibranaia co rataguay vioosioii 900 (11 f)	Psiguria	ternata	38*	Bolivia	Nee 33826 (LPB)	Wilbrandia	ebracteata	83	Paraguay	Wooston 980 (NY)
Wilbrandia longisepala 84* Brazil Mikich 38568 (NY)						Wilbrandia	longisepala	84*	Brazil	Mikich 38568 (NY)

^aLeaf samples obtained by T. S. Quedensley, Plant Biology Graduate Program, University of Texas at Austin

^bNote on label indicates that the collection information may be incorrect.

^cSamples marked with an asterisk (*) are those in which sequences for all three markers were obtained and are included in "reduced" data sets. ^dSpecimens are housed in herbaria indicated in parentheses. F = Field Museum of Natural History, FLAS = Florida Museum of Natural History, GH = Harvard University, LPB = Herbario Nacional de Bolivia, M = Botanische Staatssammlung München, MOVC = Cornell College, NY = New York Botanical Garden, TEX = University of Texas at Austin, US = Smithsonian Institution.

not in all groups. In a study where this marker was tested in Diptera, Meier et al. (2006) successfully determined less than 70% of all species. The task of finding a suitable barcoding region for plants has provided a great challenge for several reasons: (1) the mitochondrial genome in plants generally has extremely low levels of variability, (2) the effectiveness of regions in the nuclear genome is questionable due to complex evolutionary patterns, and (3) the chloroplast genome has low levels of variability (but greater than the mitochondrial genome) and is usually uniparentally inherited (Chase et al., 2005, 2007;

Kress et al., 2005; Kress and Erickson, 2007; Edwards et al., 2008). Nevertheless, the nuclear ribosomal internal transcribed spacer (ITS) and several chloroplast genes and intergenic spacers (IGS) have been suggested as potential DNA barcodes: ITS + trnH-psbA (Kress et al., 2005), ITS + rbcL (Chase et al., 2005), rpoCl+ rpoB + matK or rpoCl+ matK + psbA-trnH (Chase et al., 2007), and a portion of rbcL + trnH-psbA (Kress and Erickson, 2007). It has also been noted that even these regions are lacking sufficient levels of variation in many genera; therefore, additional regions are required for distinguishing

species in groups with extremely low levels of detectable molecular variation or in those that have undergone recent, rapid speciation (Chase et al., 2007).

In this study, we investigated the molecular evolutionary history of *Psiguria* using three independent markers: (1) a concatenated chloroplast marker made up of eight intergenic spacers, (2) both internal transcribed spacer (ITS) regions of the nuclear ribosomal DNA repeat, and (3) the intron of nuclear serine/threonine phosphatase gene. Our goals were to test the monophyly of *Psiguria*, to determine the number of species in the genus, and to detect sister relationships. Additionally, we set out to identify regions of the chloroplast genome that could be used as a barcode to distinguish species quickly and efficiently.

MATERIALS AND METHODS

Taxon sampling—Because a phylogeny of *Psiguria* has never been published and the number of species in the genus has been debated, several individuals from each species were studied. Regardless of names listed on herbarium sheets, sampling spanned the geographical and morphological breadth of the genus and included field collections made by P. R. Steele and L. E. Gilbert, collections from plants in the greenhouses of L. E. Gilbert at The University of Texas at Austin, and leaf material from herbarium collections (Table 1). In addition to 70 samples of *Psiguria*, 10 of the sister genera *Gurania* (eight) and *Helmontia* (two) were included. Outgroups were chosen based on the Cucurbitaceae family phylogeny (Kocyan et al., 2007) and included two samples of *Doyerea emeto-cathartica* and two species of *Wilbrandia*.

Fresh leaf material was dried over silica. Total DNA was extracted using either the CTAB protocol of Doyle and Doyle (1987) or the DNeasy Plant DNA Extraction Kit (Qiagen, Germantown, Maryland, USA). CTAB products were purified by ultracentrifugation in cesium chloride and ethidium bromide gradients (Sambrook et al., 1989).

Primers, PCR amplification, and DNA sequencing-Listed in Appendix S1 (see Supplemental Data with the online version of this article) are the eight chloroplast DNA intergenic spacer regions, two internal transcribed spacer (ITS) regions of the nuclear ribosomal DNA repeat, and the intron of the nuclear serine/threonine phosphatase gene (s/t phos) used as phylogenetic markers in this study, along with primer sequences and PCR annealing temperatures. With the exception of those for trnS-trnG taken from Shaw et al. (2005), all chloroplast primers were designed based on the genome sequence of Cucumis sativus L. (DQ119058; Kim et al., 2006). The ITS primers were as described by Kim and Jansen (1994). Original primers for amplifying s/t phos were obtained from Padolina (2006; primer combination #96). After this region was successfully amplified in several samples, primers specific to this study group were designed to eliminate end regions that had little or no variation and to increase amplification success. All nested primers were designed based on sequences of Psiguria samples for which initial primers amplified the region. Also shown in SAppendix S1 (see online Supplemental Data) are internal primers used to sequence some regions to obtain 2× sequence coverage. Finally, the nuclear s/t phos intron in Psiguria umbrosa contains a large (>500 bp) insert relative to all other samples; therefore, internal primers for sequencing were designed specifically for those samples (Pumb96I-F and Pumb96I-R in Appendix S1).

Chloroplast marker amplifications were performed using PCR in 25-µL volumes containing 14.6 µL of double-distilled (dd) H2O, 7.5 µL of FailSafe buffer-PreMix E (EPICENTRE Biotechnologies, Madison, Wisconsin, USA), 0.25 µL of a 20 µM solution of each forward and reverse primer, 0.4 µL of Taq polymerase (produced in the laboratory of R. K. Jansen following the protocol of Pluthero (1993) and diluted to 1 unit), and 2 µL of unquantified DNA template. The PCR reaction conditions were as follows: one round of amplification consisting of denaturation at 96°C for 3 min; annealing at the temperature for each region shown in online SAppendix S1 for 45 s; and extension at 72°C for 1 min; followed by 35 cycles of 94°C for 35 s, annealing temperature for 45 s, and 72°C for 1 min; with a final extension step of 72°C for 12 min. Amplifications were visualized on 1% agarose gels with ethidium bromide and a size standard to estimate fragment sizes and DNA concentration. The PCR amplicons were cleaned using Exo-SAP by adding a 3 µL solution of 2.25 µL of ddH2O, 0.25 µL of Exonuclease I (New England Biolabs, Ipswich, Massachusetts, USA), and 0.50 µL of Shrimp Alkaline Phosphotase (Promega, Madison,

Wisconsin, USA) to each product, and processing on a thermocycler at 37°C for 30 min, followed by 80°C for 15 min. Sequencing was conducted at the ICMB Core Facilities at The University of Texas at Austin, using ABI (Applied Biosystems, Foster City, California, USA) Big Dye chemistry.

Amplifications of both ITS and the *s/t phos* intron were performed using PCR in 25- μ L volumes containing ingredients as described above. Reaction conditions were as follows: one round of amplification consisting of denaturation at 94°C for 1 min 30 s; annealing at 53°C for 30 s; and extension at 72°C for 1.5 min; followed by 29 cycles of 94°C for 30 s, 53°C for 30 s, and 72°C for 1 min 30 s; with a final extension step of 72°C for 30 min.

Cloning was conducted using the TOPO TA cloning kit (Invitrogen, Carlsbad, California, USA). Colonies were amplified using PCR in 25- μ L volumes containing 16.1 μ L of ddH₂O, 8.0 μ L of FailSafe buffer PreMix E, 0.2 μ L of a 20 μ M solution of each pUC-18 plasmid primer (sequences listed in online SAppendix S1), 0.5 μ L of *Taq* polymerase, and 1 colony. Reaction conditions were as follows: one hot-start cycle at 95°C for 3 min 30 s; followed by 35 cycles consisting of denaturation at 95°C for 45 s, annealing at 58°C for 3 s, and extension at 72°C for 50 s; with a final extension step of 72°C for 3 min. The PCR products that did not clone successfully were directly sequenced. All sequences were submitted to GenBank, and accession numbers are listed in Appendix 1.

Phylogenetic analyses—Forward, reverse, and internal sequences of all PCR products were assembled and edited with the program Geneious Pro 4.0.4 (Biomatters Ltd., 2005–2009), and then aligned with the program CLUSTAL_X (Thompson et al., 1997), followed by manual adjustments that minimized the number of gaps. The alignment for each data set was uploaded to the TreeBase database (http://treebase.org/treebase/index.html, see Table 3 for alignment numbers). Because chloroplasts are maternally inherited in Cucurbitaceae (Corriveau and Coleman, 1988), the eight IGS were combined into one concatenated data set for analyses. Unalignable regions were cut from sequences prior to phylogenetic analyses (number of base pairs cut: *ndhF-rpl32*, 25; *ndhC-trnV*, 0; *rps16-trnQ*, 56; *trnS-trnG*, 1; *psbZ-trnM*, 13; *psbM-trnD*, 0; *rpoB-trnC*, 10; *psbE-petL*, 36; ITS1, 42; and ITS2, 35.

Nuclear ITS and *s/t phos* data sets were analyzed independently. Nuclear regions were initially analyzed with all clones sequenced. In most cases, clones of multiple samples of the same species mixed within a clade. Because these clones came from different individuals of the same species, this was expected. To compare, contrast, and combine trees from these three data sets, we chose one representative clone at random to be analyzed in an abridged data set. Selection of random clones was conducted three times with different clones to determine if certain sets of clones would give different results. To evaluate total evidence, we conducted phylogenetic analyses on a combined data set that included the concatenated chloroplast marker and the two abridged nuclear data sets. Finally, to directly compare trees resulting from each marker, we conducted additional analyses with reduced data sets that included only those samples successfully amplified and sequenced in all three data sets.

Maximum parsimony (MP) analyses were performed with the program PAUP* 4.0b10 (Swofford, 2002). For each data set, heuristic searches were conducted using 100 random addition replicates with tree-bisection-reconnection (TBR) branch swapping with either a 10-min limit enforced on each replicate or the maximum number of trees set to 10000. Additionally, searches used characters equally weighted, gaps treated as missing, and the MulTrees option. Insertions and deletions were coded in the program SeqState 1.40 (Müller, 2005) using Simmons and Ochoterena (2000) simple coding. Support for internal nodes was assessed using bootstrap analysis (Felsenstein, 1985) of 100 replicates with one random addition per replicate, and a 10-min limit enforced on each replicate.

Models of evolution were selected based on the Akaike information criterion (AIC) implemented in the program MrModeltest 2.2 (Nylander et al., 2004). Maximum likelihood (ML) analyses were performed using the program Garli 0.951 (Zwickl, 2006) with the model of evolution as selected above. Each data set was analyzed in five separate runs as suggested by Zwickl (2006). The ML analyses used the automated stopping criterion, terminating a search when the likelihood score remained constant for 20000 consecutive generations. Likelihood scores of the optimal tree generated by Garli were calculated using PAUP*, which better optimizes branch lengths (Zwickl, 2006). ML bootstrap analyses were performed in Garli (Zwickl, 2006) with 100 replicates using an automated stopping criterion set at 5000 generations. Shimodaira-Hasegawa (SH) tests (Shimodaira and Hasegawa, 1999) were conducted in PAUP* to test alternative topologies and to compare trees from different data sets. Incongruence length difference (ILD) tests (Farris et al., 1995) were used to compare reduced data sets.

Identifying DNA barcodes—To discover *Psiguria*-specific DNA barcodes, we visually scanned the chloroplast sequences for base pairs that were unique to each species. Ideally, this set would constitute a single marker with base pairs unique to all species in the genus or a minimum number of regions to delineate them.

RESULTS

Phylogenetic analysis—The model of evolution chosen for our various data sets was either the general time reversible model with proportion of invariant sites and gamma shape parameter (GTR + I + G; for the concatenated chloroplast, *s/t phos* with 385 clones, and combined data set) or general time reversible model with only gamma shape parameter (GTR + G; for the ITS with 246 clones, abridged ITS, and abridged *s/t phos* data sets). Sequences were not successfully obtained from all samples for all markers (marked with "—" in Appendix 1), and a few regions had undetermined internal gaps. A list of all regions that were coded as missing is shown in Appendix S2 (see Supplemental Data with the online version of this article).

Chloroplast data—Aligned sequence characteristics for the eight IGS are shown in Table 2. Sequence characteristics and tree statistics for the concatenated chloroplast data set are given in Table 3. The tree resulting from the ML analysis is shown in Fig. 1. Our data strongly support the monophyly of Psiguria (shown with a thick branch in Fig. 1). Helmontia is nested within Gurania, but it has a very long branch. Some clades within *Psiguria* are well supported (*P. pedata* and *P. umbrosa*), P. ternata has moderate support, and P. warscewiczii is weakly supported. Most P. triphylla samples form a strongly supported clade; however, P. racemosa and P. triphylla are found in several places in the tree (specifically, P. triphylla [54], P. triphylla [58], P. racemosa [23], and P. racemosa [24], shaded and marked with an asterisk). The identity of one Psiguria sample, designated as P. sp. (26), is uncertain. This sample was taken from an herbarium specimen annotated as P. ternata that was collected in Brazil. It does not group with the P. ternata clade, and it does not have identifiable morphological characteristics that suggest it belongs to any of the other named clades in the tree. There is <50% support for relationships among clades throughout the backbone. One exception is a weakly supported sister relationship between *P. warscewiczii* and *P. umbrosa*. In two of the five ML analyses, the P. ternata and P. pedata clades switched positions, but this difference is not well supported because the branch separating them received less than 50% bootstrap support in both MP and ML analyses, and it collapses in strict consensus trees.

Serine/threonine phosphatase intron data—This nuclear marker was successfully amplified in 60 of the 84 samples. Cloning was successful with all but 12 amplicons. Shown in Table 3 are sequence characteristics and tree statistics for the data set containing 385 clones and the abridged *s/t phos* data set. Both numbers and percentages of parsimony informative characters were much greater for the data set including all clones than the abridged set, due to variation between clones of a single sample. Alignment of sequences revealed a large (> 500 bp) insert in two of three *P. umbrosa* samples (from Trinidad-66 and St. Lucia-68) but not in a third sample (from Brazil-67).

The ML tree for the full data set of *s/t phos* clones is shown in online SAppendices S3–S5, and the ML tree for the abridged data set is shown in Fig. 2. *Wilbrandia* grouped with *Gurania* with strong bootstrap support, but with a very long branch. This marker does not support the monophyly of *Psiguria*. Four clades of *Psiguria* have strong bootstrap support: *P. pedata*, *P. warscewiczii*, *P. umbrosa*, and *P. ternata*. *Psiguria warscewiczii* and *P. umbrosa* are strongly supported as sister species. As with the chloroplast tree, *P. racemosa* and *P. triphylla* samples are paraphyletic. However, with this data set, *P. triphylla* (54) is associated with other samples of *P. triphylla*. As mentioned above, random clone selection was conducted three times for the *s/t phos* abridged data set. Each of the three abridged data sets was analyzed individually, and ML trees reconstructed (data not shown). The trees gave the same results as described above.

ITS data—Both ITS1 and ITS2 were successfully amplified in 70 of 84 samples. Cloning was successful with all but seven amplicons. The number of successful clones that was sequenced varied from one to five per sample. Putative pseudogenes were identified as those sequences having more than one base pair different in the 5.8S region from all other sequences in the same genus and were not included in analyses. In several cases, if the direct sequence of the amplified region was clean, with no ambiguous sites, it was included in the analysis.

Shown in Table 3 are sequence characteristics and tree statistics for the data set containing 246 clones and the abridged ITS data set. As with the *s/t phos* data, numbers and percentages of parsimony informative characters were much greater for the ITS data set including all clones than the abridged set due to the variation between clones of a single sample.

The ML tree for the full data set of ITS clones is shown in online Appendices S6 and S7, and the ML tree for the abridged data set is shown in Fig. 3. The abridged ML tree is identical to one of 6803 MP trees, except in the MP trees, the *Wilbrandia* clade is sister to the *Doyerea* clade, and the *P. warscewiczii* clade is sister to the *Gurania* clade but with only 57% bootstrap support. In the ML tree, *Wilbrandia* is sister to *P. warscewiczii*, and both are sister to *Gurania*, but neither has bootstrap

TABLE 2. Sequence characteristics of the eight chloroplast intergenic spacers.

Intergenic spacer		ndhF-rpl32	ndhC-trnV	rps16-trnQ	trnS-trnG	psbZ-trnM	psbM-trnD	rpoB-trnC	psbE-petL
Aligned length, w/ indels		725	743	1253	724	851	988	1148	1233
Number of coded indels		9	15	29	19	19	11	6	12
Guraniinae only, w/o indels	No. PI characters	27	27	38	17	8	14	16	29
-	% PI characters	3.77	3.71	3.10	2.41	0.96	1.43	1.40	2.38
Guraniinae only, w/ indels	No. PI characters	29	35	47	22	15	19	18	34
-	% PI characters	4.05	4.81	3.84	3.12	1.80	1.94	1.58	2.78
All samples, w/indels	No. PI characters	49	46	69	30	29	20	24	51
*	% PI characters	6.84	6.32	5.64	4.26	3.49	2.05	2.10	4.18

Note: PI = parsimony informative, w/ = with, w/o = without

TABLE 3.	Sequence c	haracteristics	and tree	e statistics	for al	l six	data sets.
----------	------------	----------------	----------	--------------	--------	-------	------------

Statistic		Concatenated chloroplast	s/t phos clones	s/t phos: abridged	ITS clones	ITS: abridged	All 3 data sets combined
Aligned length, with indels		7700	1183	1164	813	796	9660
Number of coded indels		155	43	24	42	25	204
Guraniinae ^a only, w/o indels	No. PI characters	176	257	87	157	84	356
•	% PI characters	2.33%	22.54%	7.63%	20.36%	10.89%	3.76%
Guraniinae ^a only, w/ indels	No. PI characters	219	275	94	187	92	411
•	% PI characters	2.84%	23.25%	8.08%	23.00%	11.56%	4.25%
All samples, w/indels	No. PI characters	408	278	99	227	117	626
X	% PI characters	5.30%	23.50%	8.51%	27.92%	14.70%	6.48%
Number of samples included		84	385	60	246	70	84
Number of MP trees ^b		8900	400	10000	6400	6803	164124
Tree length		830	798	272	606	289	1465
CI °		0.7104	0.6491	0.7554	0.5411	0.6029	0.6434
RI ^c		0.9087	0.9640	0.9394	0.9143	0.8628	0.8830
-ln L		14466.81	7270.04	3331.88	4827.42	2706.05	21602.42
Figure		1	S3, S4, S5	2	S6, S7	3	4
TreeBase alignment no.		M4677	M4681	M4678	M4682	M4679	M4680

Note: An "indel" may be an individual base pair (bp) or a set of contiguous bps.

^a Guraniinae included only samples of Psiguria, Gurania, and Helmontia.

^b Maximum number of trees was set to 10000 on all data sets except the combined set, upon which a 10-min time limit was enforced on each replicate. ^c Uninformative characters were excluded.

support above 50%. Two clades have moderate to strong bootstrap support: P. pedata and P. ternata. As with the other data sets, P. racemosa and P. triphylla samples are paraphyletic. There is moderate bootstrap support for a sister relationship between P. umbrosa and some samples of P. warscewiczii. Psiguria warscewiczii split into two clades-one sister to Wilbrandia (with <50% bootstrap support) and the other sister to P. umbrosa. The two clades of P. warscewiczii are split along geographical lines. The group sister to Wilbrandia is from southern Central America/northern South America (Costa Rica, Panama, and Columbia), and the samples sister to P. umbrosa are from northern Central America (Mexico, Guatemala, Belize, and Honduras). Random clone selection was conducted three times for the abridged ITS data set. Each of the three abridged data sets was analyzed individually, and ML trees were reconstructed (data not shown). Trees gave the same results as described above.

Combined data—Shown in Table 3 are sequence characteristics and tree statistics for the combined data set, which includes all genomic regions that amplified and were sequenced in all samples. The tree resulting from the ML analysis is shown in Fig. 4. The combined topology is not radically different from the chloroplast tree except that branches are generally longer with more support for individual clades. This tree provides strong support for the monophyly of Psiguria. Helmontia is nested within Gurania, again with very long branches leading to Helmontia. Psiguria pedata, P. ternata, and P. umbrosa are well supported. Psiguria triphylla has moderate support (except sample P. triphylla [58]), and P. warscewiczii has low to moderate support. Four of the five samples of P. racemosa grouped together (excluding P. racemosa [24]), but with <50% bootstrap support. As before, the one sister relationship with bootstrap support above 50% is P. warscewiczii and P. umbrosa. The unidentified Psiguria sample (26) again does not fall into any of the well-supported clades.

Although bootstrap support for the monophyly of *Psiguria* is slightly lower in the combined tree than in the chloroplast tree, all other clades were enhanced by the addition of nuclear data,

with one exception; the support for the clade of *P. pedata*, which was 100/100 (MP/ML) in both data sets. The bootstrap support for *P. triphylla* and *P. racemosa* clades decreased, but one sample of each (*P. triphylla* [54] and *P. racemosa* [23]) that was not grouping with the species clade of the same name in the chloroplast tree, moved into the putatively correct clade in the combined tree. Additionally, support for a sister relationship between *Gurania* and *Helmontia* increased.

Marker comparison with reduced data sets—Sequences for all three markers were obtained for 57 samples (marked with an asterisk in Table 1). These included one of each outgroup (*Doyerea* and *Wilbrandia*), six *Gurania*, 49 *Psiguria* including some from each species, and no *Helmontia*. The trees resulting from ML analyses are shown in online SAppendices S8 (chloroplast), S9 (*s/t phos*), and S10 (ITS). These data sets do not result in topologies different from the full data sets.

DNA barcoding—It was not possible to identify a single chloroplast region that had nucleotide changes unique to each species. The smallest number of noncoding chloroplast regions required to distinguish all species of Psiguria was four. Table 4 lists the markers and specific nucleotide positions that distinguish the species. If the sequence has a nucleotide other than the one listed in the table for that position, it is not the listed species. Only one region (*ndhC-trnV*) is necessary to identify *P*. pedata, and it has three unique nucleotides. One region (rps16trnQ) identifies P. ternata with one unique nucleotide, and one region (rpoB-trnC) identifies P. racemosa with two unique nucleotides. Three chloroplast regions (rps16-trnQ [3 bp], ndhCtrnV [2 bp], and ndhF-rpl32 [1 bp]) are listed for P. triphylla. Any one or all of these regions can be used to identify P. triphylla. At least two chloroplast regions are required to identify P. umbrosa and P. warscewiczii (ndhF-rpl32 plus rpoBtrnC or psbZ-trnM). Two nucleotide bases in ndhF-rpl32 are unique to both P. umbrosa and P. warscewiczii. Then, to distinguish P. umbrosa from P. warscewiczii, either rpoB-trnC or *psbZ-trnM* must be as listed in Table 4.

Fig. 1. Maximum likelihood (ML) tree ($-\ln L = 14466.81$) inferred from the concatenated chloroplast data set, identical to one of the 8900 maximum parsimony (MP) trees (length = 830; CI = 0.71; RI = 0.91). The data set includes 84 samples, with *Doyerea* and *Wilbrandia* used to root the tree. Numbers above the lines indicate MP/ML bootstrap values; a black square indicates a bootstrap value <50%. Shaded samples with asterisks fall outside the clades of the same name. The parenthetical number indicates the sample designation in Table 1.

DISCUSSION

Marker selection—*Chloroplast*—Prior to embarking on the phylogenetic study of *Psiguria*, it was first necessary to identify variable regions that were sufficiently informative. For a useful

number of informative characters to be obtained at this low taxonomic level, multiple noncoding regions had to be sequenced and combined to represent one chloroplast marker. In a pilot study including three *Psiguria* and one *Gurania* sample, 26 regions of the chloroplast genome were investigated based on a

Fig. 2. Maximum likelihood (ML) tree ($-\ln L = 3331.88$) inferred from an abridged set of the clones (one per sample) of the serine/threonine phosphatase gene intron. This tree is identical to one of the 10000 maximum parsimony (MP) trees (length = 272; CI = 0.76; RI = 0.94). The data set includes 60 samples, with *Doyerea* and *Wilbrandia* used to root the tree. Numbers above the lines indicate MP/ML bootstrap values; a black square indicates a bootstrap value <50%. The shaded samples fell outside the clades of the same name in the chloroplast data set. The parenthetical number indicates the sample designation in Table 1.

consensus of results in the literature (Panero and Crozier, 2003; Shaw et al., 2005; Daniell et al., 2006; Timme et al., 2007) and a study of the published chloroplast genome for *Cucumis sativus* (Kim et al., 2006). After testing these regions for amplification success, suitable length, and phylogenetic utility, we selected the most informative eight (Table 2) by conducting phylogenetic analyses with several combinations until there was little increase in bootstrap support. Regions that were eliminated are *rpl16* intron, *trnT-psbD*, *trnT-trnL*, *ycf3-trnS*, *trnCycf6*, *trnG2G-trnG*, *rpl20-5'rps12*, *rps16* intron, *trnD-trnE*, *trnG* intron, *trnT-psbD*, *trnE-trnT*, *atpF-atpH*, *psbA-trnH*, *psbJ-petA*, *ndhA* intron, *rpl32-trnL*, and *trnL-trnF*, which includes the *trnL* intron and the IGS, *trnL-trnF*. Each of these regions had <1% parsimony informative characters within Guraniinae.

Shaw et al. (2005, 2007) investigated potential variability in 34 noncoding chloroplast regions in three groups of angiosperms: asterids, rosids, and monocots. Of the nine regions that showed the greatest variation in their study, four represented the most variable regions for *Psiguria: rps16-trnQ*, *ndhC-trnV*, *ndhF-rpl32*, and *psbE-petL*. Three others (*rpl32-trnL*, *trnT-psbD*, and *psbJ-petA*) showed <1% variation in Guraniinae, one (*atp1-atpH*) was not annotated in the *Cucumis sativus* genome, and the other (*rps16-trnK*) did not amplify successfully. There-fore, as concluded by Shaw et al. (2007), there is no chloroplast

Fig. 3. Maximum likelihood (ML) tree ($-\ln L = 2706.05$) inferred from an abridged set of the clones (one per sample) of the nuclear ribosomal internal transcribed spacers (ITS1 and ITS2). This tree is identical to one of the 6803 maximum parsimony (MP) trees (length = 289; CI = 0.60; RI = 0.86), except in the MP trees, the *Wilbrandia* clade is sister to the *Doyerea* clade, and the *P. warscewiczii* clade is sister to the *Gurania* clade. The data set includes 70 samples, with the *Doyerea* and the *Wilbrandia* samples used to root the tree. Numbers above the lines indicate MP/ML bootstrap values; a black square indicates a bootstrap value <50%. The shaded samples fell outside the clades of the same name in the chloroplast data set. The parenthetical number indicates the sample designation in Table 1. "X" indicates that this branch does not occur in this result.

region (or combination of regions) that will have phylogenetic utility in all lineages, so several must be screened in a reduced set of samples before committing to a studywide sequencing effort.

Low-copy nuclear—One hundred forty-one primer combinations for amplifying low-copy nuclear (LCN) regions were screened for phylogenetic usefulness in *Psiguria* (Steele et al., 2008). These primer pairs were designed by comparing the whole nuclear genome of *Oryza sativa* L. to *Arabidopsis thaliana* (L.) Heynh. to identify conserved regions (Padolina, 2006). In *Psiguria*, 11 regions amplified successfully, and clones were originally sequenced in at least three *Psiguria* species plus outgroups. Steele et al. (2008) discovered three regions that were potentially phylogenetically informative: genes for ATP synthase, actin, and serine/threonine phosphatase (*s/t phos*). Actin was not tested further for phylogenetic utility because there were at least two copies of the gene. After adding many samples to the ATP synthase data set, it was discovered that there was insufficient variation between species, and little bootstrap support for any clades.

Only one copy of serine/threonine phosphatase (*s/t phos*) was detected in a preliminary study by Steele et al. (2008). It showed the greatest potential for phylogenetic utility after adding many samples to the data set. The *s/t phos* gene codes for an enzyme that dephosphorylates serine and threonine residues in proteins (Wera and Hemmings, 1995). Phosphorylation of structural and regulatory proteins is a major intracellular con-

Fig. 4. Maximum likelihood (ML) tree ($-\ln L = 21602.42$) inferred from the combined data set (chloroplast + *s/t phos* + ITS), identical to one of the 164124 maximum parsimony (MP) trees (length = 1465; CI = 0.64; RI = 0.88). The data set includes 84 samples, with *Doyerea* and *Wilbrandia* used to root the tree. Numbers above the lines indicate MP/ML bootstrap values; a black square indicates a bootstrap value <50%. Shaded samples with asterisks fall outside the clades of the same name. Shaded-only samples fall outside the clades of the same name in the chloroplast data set. The parenthetical number indicates the sample designation in Table 1.

trol mechanism in eukaryotes. The phosphorylation state of a protein is a dynamic process controlled by both protein kinases and protein phosphatases (Wera and Hemmings, 1995). We designed a *Psiguria*-specific set of primers such that most of the amplified region contained an intron within *s/t phos*.

The sequence encoding serine/threonine phosphatase is a member of a large gene family in *Arabidopsis*. It was not possible to identify which member of the family was amplified/ sequenced in this study because sequences obtained did not match any of those in the GenBank *Arabidopsis* database. Perhaps the lack of match similarity is because the sequences amplified here consist mainly of noncoding DNA. The >500 bp insert in two samples (66 and 68) occurred in the center of the sequence and, therefore, would not interfere with putative splicing sites of the exons.

Marker utility-It is surprising that, despite the large number of genomic regions (eight chloroplast, ITS, and one LCN gene intron) used in this study, bootstrap support for several clades is only weak or moderate. Systematic studies of other neotropical genera often include fewer molecular markers, yet result in higher bootstrap support for individual species. For example, Saslis-Lagoudakis et al. (2008) used ITS plus the plastid trnL intron, trnL-F intergenic spacer, and partial exon of matK to investigate the systematics of Platymiscium Vogel (Fabaceae), a genus of rainforest trees. In most cases, these regions provide enough phylogenetic information to delineate species and, in some cases, varieties of species with high bootstrap support. Lack of support for species of Psiguria may be due to the estimated young age of the group (6 ± 3 mya; Schaefer et al., 2009) or it may indicate that the genus has a low rate of molecular evolution.

Taxonomic implications—Molecular phylogeny and alternative hypothesis testing-Phylogeny reconstructions from the concatenated chloroplast (Fig. 1) and combined (Fig. 4) data sets show strong bootstrap support for the monophyly of Psiguria. Monophyly is not supported by the s/t phos (Fig. 2) or ITS (Fig. 3) trees. Although the tree resulting from the combined data set (Fig. 4) has the longest branches and most well-supported clades, the large amount of chloroplast data (7700 bp) may be overwhelming the signal contributed by the two nuclear data sets (s/t phos-1164 bp and ITS-796 bp). To directly compare results from the three markers, reduced data sets were created that included only those samples in which all three markers were successfully amplified and sequenced (online SAppendices S8-S10). Both SH and ILD tests were conducted to pairwise compare all three data sets, and in all comparisons, trees were significantly different (P < 0.05).

Both the monophyly of *Psiguria* and its distinction as a genus separate from *Gurania* are supported by several morphological characters discussed above (and more thoroughly in Steele, in press). The lack of support by the nuclear data for the monophyly of *Psiguria* may be caused by one or more phenomena. These include incomplete lineage sorting or mistaken orthology. Although as many as 12 *s/t phos* clones were included for each sample, those regions sequenced in *P. pedata* may be paralogous to those from other species. This paralogy is more likely because this gene is a member of a large gene family and could also explain the split in *P. warscewiczii* samples in ITS trees and the grouping of one clade with *Gurania*. Furthermore, although no hybrids have been identified in *Psiguria* based on morphological characters, it is possible that the nuclear genes are indicating their presence. Additional nuclear markers are required to test this hypothesis. Low bootstrap support, predominantly in the backbone of the trees, may be due to the lack of informative characters. Nonetheless, the nuclear data sets support several of the same species clades supported by the chloroplast data.

Two collections, *P. triphylla* (58) and *P. racemosa* (24), do not group with other collections of those species, but branches separating them all have <50% bootstrap support and collapse in strict consensus trees. We conducted SH tests forcing *P. triphylla* (58) with the *P. triphylla* clade, and another forcing *P. racemosa* (24) with the *P. racemosa* clade. In both of these tests, alternative trees were rejected (P = 0.001 and P = 0.042, respectively). There are several possible explanations for the positions of these two collections. They may represent distinct species, they could be hybrids, or there may not be enough variation for correct placements. In contrast, two collections that did not group with other samples of the same species, *P. triphylla* (54) and *P. racemosa* (23), in the chloroplast tree, are grouping in those clades in the combined tree.

Trees inferred from s/t phos and ITS clones have, for the most part, the same topologies as the abridged trees (Figs. 2 and 3). One discrepancy is with sample P. triphylla (56) from Ecuador. In the s/t phos tree, all 10 P. triphylla (56) clones group together but within a clade of P. racemosa clones with moderate support (online Appendix S4). However, in the ITS tree, one clone of P. triphylla (56) (C04; online Appendix S6) falls into a moderately supported clade of P. ternata clones, while the other four group into a weakly supported clade of P. triphylla clones. Although hybridization has never been reported in wild *Psiguria*, artificial hybrids have been made in the greenhouse (L. E. Gilbert, unpublished data). It is possible that this is an example of a natural hybrid, but the parent species cannot be determined. Also in the nuclear trees, Wilbrandia is sister or near to Gurania. Utilizing the combined data, the alternative topology placing Wilbrandia sister to Gurania was rejected (P = 0.035). Some topological difference between the s/t phos and ITS trees may be due to long-branch attraction.

The *P. warscewiczii*, *P. ternata*, and *P. pedata* clades each contain two weakly to moderately supported groups (Fig. 4). The ITS tree separates *P. warscewiczii* along geographical lines, but this weak result is not supported in the combined tree. There is no morphological evidence that suggests that any of these clades should be split into two. Finally, the unidentified sample, *Psiguria* sp. (26), is isolated in the tree. This sample was collected in Brazil and annotated as *P. ternata*, but this placement was rejected in an SH test (P = 0.005). It is possible that this collection represents a seventh species of *Psiguria*, but characteristics must be identified to recognize it as distinct. Furthermore, additional samples from this geographic region should be included in future phylogenetic analyses.

In the chloroplast tree, *Helmontia* groups with *Gurania* on a very long branch. A previous phylogeny of Cucurbitaceae showed *Helmontia* embedded within *Psiguria* and *Gurania* (Kocyan et al., 2007). Because we included an expanded sampling of *Psiguria* and a greater number of markers, we used the combined data set to test the alternative topology that *Helmontia* is sister to *Psiguria*, and this alternative was rejected (P = 0.020). It will still be necessary to expand sampling of *Gurania*—estimated to contain approximately 75 species (A. Neill, Botanical Research Institute of Texas, personal communication)—to determine if this placement of *Helmontia* is a good one or is due to long-branch attraction.

January	2010]

or comparison a	
ated GenBank accession numbers necessary for	tification; see "Discussion" for more details.
ices and associa	quired for ident
epresentative sequen	on of sequences is rec
ecies of Psiguria. The 1	some cases, a combination
e unique nucleotides that identify sl	r base number in that sequence. In
3 4. DNA barcodes with the	given along with the particula
TABLE	οŋ

are

			ConBort			Prime	- SID
Species uniquely identifie	d Representative sequence ^a	Chloroplast marker	accession	Base pair number	Unique nucleotide	Forward	Reverse
P. pedata	<i>P. pedata</i> (14)	ndhC-trnV	GQ489273	50	U	ndhC-trnV forward	ndhC-trnV nested-R
			I	315	C		
				434	C		
P. triphylla	P. triphylla (28)	ndhF-rpl32	GQ489356	180	Т	ndhF-rpl32 forward	ndhF-rpl32 nested-R
P. triphylla	P. triphylla (28)	ndhC-trnV	GQ489280	54	Т	ndhC-trnV forward	ndhC-trnV nested-R °
			I	65	Т		
P. triphylla	P. triphylla (28)	rps16-trnQ	GQ489768	30	C	rps16-trnQ forward	rps16-trnQ nested-R d
				638	T		
				713	Т		
P. racemosa	P. racemosa (22)	rpoB-trnC	GQ489682	855	C	rpoB-trnC internal-F	rpoB-trnC reverse
				942	C		
P. ternata	P. ternata (34)	rps16-trnQ	GQ489773	434	C	rps16-trnQ forward	rps16-trnQ nested-R d
P. umbrosa	P. umbrosa (64)	psbZ-trnM	GQ489641	196	C	psbZ-trnM forward	psbZ-trnM nested-R °
P. umbrosa	P. umbrosa (64)	rpoB-trnC	GQ489724	721	G	rpoB-trnC internal-F	rpoB-trnC reverse
P. umbrosa /	P. umbrosa (64)	ndhF-rpl32	GQ489394	422	Т	ndhF-rpl32 forward	ndhF-rpl32 nested-R
P. warscwiczii		I		504	Т	I	I

^b Unless noted otherwise, the indicated primer from SAppendix S1 (see Supplemental Data with the online version of this article) may be used. ^c As an alternative, the following proposed reverse primer may be used to amplify a 400-bp-shorter region: GCA TTG GGT TAT GGT GGA G. ^d As an alternative, the following proposed reverse primer may be used to amplify a 300-bp-shorter region: AAT AGG TAG GAA CAA TCG. ^e As an alternative, the following proposed reverse primer may be used to amplify a 150-bp-shorter region: AAT AGG TAG GAA CAA TCG.

167

The number of species in *Psiguria* has been estimated to be between eight (Jeffrey, 1978) and 29 (Cogniaux, 1916), and IPNI lists 17. Taking into consideration both the molecular phylogeny and results of an extensive morphological study (Steele, in press), we recognize six species: *P. pedata*, *P. ternata*, *P. umbrosa*, *P. warscewiczii*, *P. triphylla*, and *P. racemosa*. Although one could argue that the molecular results may suggest more than six species, morphological studies (Steele, in press) do not support splitting of any species. Nonetheless, future collections of *Psiguria* and additional sequencing of molecular markers may contribute to the discovery of additional species.

On the basis of our results, we propose the simplified phylogeny of *Psiguria* shown in Fig. 5. The monophyly of Guraniinae and *Psiguria* have strong bootstrap support. *Psiguria pedata* is sister to the remainder of *Psiguria* with moderate bootstrap support. *Psiguria warscewiczii* and *P. umbrosa* are sister species with moderate bootstrap support, and there are six well-defined species. It turns out that Jeffrey's (1978) circumscription of *Psiguria* species matches fairly closely with the results obtained here.

Implications for ecological and biogeographical studies-The phylogenetic framework shown in Fig. 5 will assist ecologists and evolutionary biologists with questions surrounding this rainforest vine. For example, Condon et al. (2008) are investigating the pattern of host use and diversity in Blepharoneura fruit flies, whose larvae feed within flowers or fruits of some Psiguria and Gurania. Additionally, Psiguria has a mutualistic association with its pollinators, *Heliconius* butterflies, making it a model system for investigating coevolution. An evolutionary history of the butterflies has been proposed (Beltrán et al., 2007), and now a missing piece of information needed to understand this important system (the genealogy of their coevolved pollen hosts) is available. Ecologists and biologists can now address important questions about the evolutionary history of this interaction. As an extension of this work, studies of a multitude of plants, insects, and other animals in the biological network can be conducted in a phylogenetic context. These may include insect species in agricultural pest families such as tephritid fruit flies, chrysomelid flea beetles, coreid

Fig. 5. Phylogeny of *Psiguria*—a simplified version of the tree inferred from a combination of eight chloroplast intergenic spacers, ITS, and the nuclear *serine/threonine phosphatase* gene intron—showing geographic distributions. Symbols represent bootstrap values as indicated. MX = Mexico, CA = Central America, SA = South America, LA = Lesser Antilles, and GA = Greater Antilles.

bugs, and pyralid moths. Knowledge gained from studying such interactions involving *Psiguria* may add to our general understanding of parallel interaction networks involving agriculturally important members of Cucurbitaceae such as *Cucumis sativus*, *Citrullus lanatus* (Thunb.) Matsum. & Nakai, and *Cucurbita pepo* L.

Species of *Psiguria* are found throughout the New World tropics with a geographic distribution extending from southern Mexico to Paraguay and in the Caribbean islands. The distribution of each species is shown in Fig. 5. Although it was previously believed that there were two species endemic to the Caribbean islands, our data suggest that there may be only one or none. There is only one taxon in the Greater Antilles, *P. pedata (P. trifoliata* is synonymous), and at least one sample of this species has been collected in Costa Rica (sample no. 20). However, it is possible that this specimen was collected from a recent introduction. Two other species, *P. triphylla* and *P. umbrosa*, are predominantly continental, but they extend into the Lesser Antilles.

Unlike its closest relatives, *Gurania* and *Helmontia*, which are mostly confined to the continent, *Psiguria* is found both on the continent and throughout the West Indies. *Wilbrandia*, the sister genus to the subtribe Guraniinae, is found only in Brazil and northern Argentina (Cogniaux, 1916), while the next closest genus, *Doyerea*, has approximately the same range (range data provided by Missouri Botanical Garden, accessed through GBIF [2009] Data Portal) as *Psiguria*, although shifted slightly northward. With the geographic distribution of *Psiguria*'s closest relatives predominantly covering South America and Central America (SA/CA), the most likely scenario is that *Psiguria* originated in SA/CA. Subsequently, the genus dispersed to the Greater Antilles (GA), leading to *P. pedata*. Then, some members of the genus migrated into the Lesser Antilles (LA) (*P. umbrosa*), and others migrated northward to Mexico (MX).

Morphological characters—The six species of Psiguria supported by the molecular phylogeny are also distinguished by a few morphological characters, predominantly in male flowers (Steele, in press). Psiguria pedata is characterized by anthers folded backward, whereas all other species have straight anthers. *Psiguria triphylla* has >0.75 male flowers per millimeter and pedicels absent. Psiguria ternata and P. racemosa both have pink flowers, but P. ternata has trifoliolate leaves, and P. racemosa has simple, trilobed leaves. Psiguria umbrosa and P. warscewiczii both have calves and peduncles that are light green with darker green speckles and orange petals, but P. umbrosa has longer pedicels (>2.0 mm) and thin, linear sepals, while *P. warscewiczii* has short pedicels (<2.0 mm) and thick, triangular sepals. For taxonomic keys and complete descriptions of all species, see Steele (in press). The reliance upon male flowers to distinguish species of *Psiguria* morphologically argues for the need to use DNA barcodes to help identify species, especially since flowers are not always available in the field or on herbarium specimens.

Psiguria-specific DNA barcodes—While it has been suggested that there should be a region (or regions) of DNA that can be used as a barcode to identify species across land plants (Chase et al., 2005, 2007; Kress and Erickson, 2007), these authors also noted that some groups may require additional DNA regions (for example, in *Aspalathus* [Fabaceae] [Edwards et al., 2008] and in *Solanum* sect. *Petota* [Solanaceae] [Spooner, 2009]). We suggest that *Psiguria* is one of those groups because

regions that have been proposed so far are not variable enough to distinguish its species. ITS copies have nearly as much variation between some clones as between some species (see online SAppendices S6 and S7). There is so little variation in noncoding chloroplast regions between species of Psiguria, and even between genera within Guraniinae (Table 2), that one could not expect enough variation between coding regions of the chloroplast genome such as rbcL (Chase et al., 2005), rpoC1, rpoB, or matK (Chase et al., 2007) to be useful as DNA barcodes. The IGS psbA-trnH has been suggested in conjunction with other regions (Kress et al., 2005; Chase et al., 2007; Kress and Erickson, 2007). As opposed to the 300-400 bp length described in other groups, this noncoding region in Cucumis sativus, the species most closely related to Psiguria whose whole chloroplast genome has been sequenced (Kim et al., 2006), is only 150 bp long. It would be very surprising if this region were useful for distinguishing species of Psiguria.

Spooner (2009) found similar difficulties in Solanum sect. Petota (Solanaceae). ITS had too much intraspecific variation, and the plastid markers lacked sufficient variation. Edwards et al. (2008) concluded that at least three molecular regions would be necessary for species discrimination in Aspalathus. As with Psiguria, species recognition in Aspalathus is dependent upon floral characters; therefore, in most cases, identification of sterile specimens is not possible from morphological characters (Edwards et al., 2008). In their assessment of potential DNA barcodes for Aspalathus, species identification depended upon a "threshold of sequence divergence" (p. 1318). In Psiguria, because of confounding intraspecific variation, it was necessary to be more explicit. We looked through sequences of the chloroplast markers used in the phylogenetic study and identified a nucleotide position (or positions) with a base unique to each species. At least four regions are necessary to distinguish species of *Psiguria* (Table 4), none of which is a region that has been suggested for potential plant barcodes. This result indicates that multiple regions will be necessary to identify groups with little detectable molecular variation, but it also underlines the notion that different regions may be necessary for each plant group.

DNA barcoding has attracted much controversy in recent years (Ebach and Holdrege, 2005; Hebert and Gregory, 2005; Marshall, 2005; Meyer and Paulay, 2005; Will et al., 2005). Many argue that the use of DNA barcodes to identify species will overshadow the need for morphological keys or characters and will take funding away from classical taxonomic studies (Ebach and Holdrege, 2005). The DNA barcodes presented here will lend support to systematists, ecologists, and evolutionary biologists trying to identify species of Psiguria that are not in an appropriate life history stage for morphological identification (i.e., without male flowers) and will help to identify many sterile herbarium specimens or those that have been damaged. DNA barcodes can be used in conjunction with morphological characters, when they are available. This combined use of molecular and morphological data is one of the major advantages espoused by proponents of DNA barcodes (Gregory, 2005; Hebert and Gregory, 2005; Schindel and Miller, 2005). Another argument is that there may be limited confidence in a particular DNA barcode (or set of barcodes) unless a comprehensive sample of specimens is tested for conformity (Meyer and Paulay, 2005). For each Psiguria species delimited in this study, we sampled multiple individuals with quantities relative to geographical range and morphological variation (8: P. pedata, 5: P. racemosa, 9: P. ternata, 28: P. triphylla, 6: P. umb169

rosa, and 13: *P. warscewiczii*). We feel confident that these regions will successfully identify species of *Psiguria*.

Conclusions—A combined molecular data set including regions from two genomes and totaling nearly 10000 bp strongly supports the monophyly of *Psiguria*. These data also support the recognition of six species within *Psiguria*. Sister relationships are resolved, although some are not well supported. Further information about sister relationships and additional splitting of species will require the identification of additional molecular and morphological characters. Four chloroplast DNA barcodes can be used to distinguish the six species of *Psiguria*, and they may be useful in other groups of Cucurbitaceae. For the first time, systematists, ecologists, and evolutionary biologists have the tools to identify species of *Psiguria*, even of sterile specimens, and pursue questions surrounding these vines of rainforest ecosystems.

LITERATURE CITED

- BELTRÁN, M., C. D. JIGGINS, A. V. Z. BROWER, E. BERMINGHAM, AND J. MALLET. 2007. Do pollen feeding, pupal-mating and larval gregariousness have a single origin in *Heliconius* butterflies? Inferences from multilocus DNA sequence data. *Biological Journal of the Linnean Society* 92: 221–239.
- BLAXTER, M., B. ELSWORTH, AND J. DAUB. 2004. DNA taxonomy of a neglected animal phylum: An unexpected diversity of tardigrades. *Proceedings of the Royal Society of London. Series B. Biological Sciences* 271: S189–S192.
- BIOMATTERS LTD. 2005–2009. Geneious [computer program]. Website http://www.geneious.com.
- BOGGS, C. L., J. T. SMILEY, AND L. E. GILBERT. 1981. Patterns of pollen exploitation by *Heliconius* butterflies. *Oecologia* 48: 284–289.
- CHASE, M. W., R. S. COWAN, P. M. HOLLINGSWORTH, C. VAN DEN BERG, S. MADRIÑÁN, G. PETERSEN, O. SEBERG, ET AL. 2007. A proposal for a standardised protocol to barcode all land plants. *Taxon* 56: 295–299.
- CHASE, M. W., N. SALAMIN, M. WILKINSON, J. M. DUNWELL, R. P. KESANAKURTHI, N. HAIDAR, AND V. SAVOLAINEN. 2005. Land plants and DNA barcodes: Short-term and long-term goals. *Philosophical Transactions of the Royal Society, B, Biological Sciences* 360: 1889–1895.
- CHEESMAN, E. E. 1940. Flora of Trinidad and Tobago, vol. 1, part 7, 441. Department of Agriculture, Government Print Office, Port of Spain, Trinidad.
- COGNIAUX, A. 1916. Cucurbitaceae—Fevilleae et Melothrieae. *Pflanzenreich* 66 (IV, 275.I): 178–230.
- CONDON, M. A. 1984. Reproductive biology, demography, and natural history of Neotropical vines *Gurania* and *Psiguria* (Guraniinae): A study of the adaptive significance of size-related sex change. Ph.D. dissertation, University of Texas, Austin, Texas, USA.
- CONDON, M. A., AND L. E. GILBERT. 1990. Reproductive biology and natural history of the Neotropical vines Gurania and Psiguria. *In D.* M. Bates, R. W. Robinson, and C. Jeffrey [eds.], Biology and utilization of the Cucurbitaceae, 150–166. Cornell University Press, Ithaca.
- CONDON, M. A., AND A. L. NORRBOM. 1994. Three sympatric species of *Blepharoneura* (Diptera: Tephritidae) on a single species of host (*Gurania spinulosa*, Cucurbitaceae): New species and new taxonomic methods. Systematic Entomology 19: 279–304.
- CONDON, M. A., S. J. SCHEFFER, M. L. LEWIS, AND S. M. SWENSEN. 2008. Hidden neotropical diversity: Greater than the sum of its parts. *Science* 320: 928–931.
- CONDON, M. A., AND G. J. STECK. 1997. Evolution of host use in fruit flies on the genus *Blephroaneura* (Diptera: Tephritidae): Cryptic species on sexually dimorphic host plants. *Botanical Journal of the Linnean Society* 60: 443–466.
- CORRIVEAU, J. L., AND A. W. COLEMAN. 1988. Rapid screening method to detect potential biparental inheritance of plastid DNA and results

- DANIELL, H., S.-B. LEE, J. GREVICH, C. SASKI, T. QUESADA-VARGAS, C. GUDA, J. TOMKINS, AND R. K. JANSEN. 2006. Complete chloroplast genome sequences of *Solanum bulbocastanum, Solanum lycopersicum* and comparative analyses with other Solanaceae genomes. *Theoretical and Applied Genetics* 112: 1503–1518.
- DOYLE, J. J., AND J. L. DOYLE. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bulletin* 19: 11–15.
- EBACH, M. C., AND C. HOLDREGE. 2005. DNA barcoding is no substitute for taxonomy. *Nature* 434: 697.
- EDWARDS, D., A. HORN, D. TAYLOR, V. SAVOLAINEN, AND J. A. HAWKINS. 2008. DNA barcoding of a large genus, *Aspalathus L.* (Fabaceae). *Taxon* 57: 1317–1327.
- FARRIS, J. S., M. KÄLLERSJÖ, A. G. KLUGE, AND C. BULT. 1995. Constructing a significance test for incongruence. Systematic Biology 44: 570–572.
- FELSENSTEIN, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. *Evolution* 39: 783–791.
- GBIF [Global Biodiversity Information Facility]. 2009. GBIF Data Portal [online]. Website http://www.gbif.net [accessed 29 January 2009].
- GILBERT, L. E. 1972. Pollen feeding and reproductive biology of *Heliconius* butterflies. *Proceedings of the National Academy of Sciences, USA* 69: 1403–1407.
- GILBERT, L. E. 1975. Ecological consequences of a coevolved mutualism between butterflies and plants. *In* L. E. Gilbert and P. H. Raven [eds.], Coevolution of animals and plants, 210–240. University of Texas Press, Austin, Texas, USA.
- GILBERT, L. E. 1977. Insect-plant coevolution: The organization of ecosystems. *In* V. Labyrie [ed.], Comportement des insects et milieu trophique, 399–413. Centre national de la recherche scientifique [C.N.R.S.], Paris, France.
- GILBERT, L. E. 1980. Coevolution of animals and plants: A 1979 postscript. In L. E. Gilbert and P. H. Raven [eds.], Coevolution of animals and plants, revised ed., 247–263. University of Texas Press, Austin, Texas, USA.
- GILBERT, L. E. 1993. An evolutionary food web and its relationship to tropical biodiversity. *In* W. Bartholott, C. M. Naumann, K. Schmidt-Loske, and K.-L. Schuchmann [eds.], Animal–plant interactions in tropical environments, 17–28. Zoologisches Forschungsinstitut und Museum Alexander Koenig, Bonn, Germany.
- GRAHAM, A. 2003. Historical phytogeography of the Greater Antilles. Brittonia 55: 357–383.
- GREGORY, T. R. 2005. DNA barcoding does not compete with taxonomy. *Nature* 434: 1067.
- HAJIBABAEI, M., D. H. JANZEN, J. M. BURNS, W. HALLWACHS, AND P. D. N. HEBERT. 2006. DNA barcodes distinguish species of tropical Lepidoptera. *Proceedings of the National Academy of Sciences, USA* 103: 968–971.
- HEBERT, P. D. N., AND T. R. GREGORY. 2005. The promise of DNA barcoding for taxonomy. *Systematic Biology* 54: 852–859.
- HEBERT, P. D. N., M. Y. STOECKLE, T. S. ZEMLAK, AND C. M. FRANCIS. 2004. Identification of birds through DNA barcodes. *PLoS Biology* 2: e312.
- HOWARD, R. A. 1973. The enumeratio and selectarum of Nicolaus von Jacquin. Journal of the Arnold Arboretum 54: 437–438, 440–442.
- INTURRALDE-VINENT, M. A., AND R. D. E. MACPHEE. 1999. Paleogeography of the Caribbean region: Implications for Cenozoic biogeography. Bulletin of the American Museum of Natural History 238: 1–95.
- IPNI [INTERNATIONAL PLANT NAMES INDEX]. 2008. Published on the Internet http://www.ipni.org [accessed November 2008]. Collaboration between The Royal Botanic Gardens, Kew, Harvard University Herbaria, and the Australian National Herbarium.
- VON JACQUIN, N. J. 1760. Enumeratio systematica plantarum. Lugduni Batavorum, Leiden, Germany.
- JEFFREY, C. 1978. Further notes on *Cucurbitaceae*: IV* Some New-World taxa. *Kew Bulletin* 33: 347–380.
- JEFFREY, C. 2005. A new system of Cucurbitaceae. *Botanik Zhurnal* 90: 332–335.

- KIM, J. S., J. D. JUNG, J. A. LEE, H. W. PARK, K. H. OH, W. J. JEONG, D. W. CHOI, ET AL. 2006. Complete sequence and organization of the cucumber (*Cucumis sativus* L. cv. Baekmibaekdadagi) chloroplast genome. *Plant Cell Reports* 25: 334–340.
- KIM, K.-J., AND R. K. JANSEN. 1994. Comparisons of phylogenetic hypotheses among different datasets in dwarf dandelions (*Krigia*, Asteraceae): Additional information from internal transcribed spacer sequences of nuclear ribosomal DNA. *Plant Systematics and Evolution* 190: 157–185.
- KOCYAN, A., L.ZHANG, H. SCHAEFER, AND S. RENNER. 2007. A multi-locus chloroplast phylogeny for the Cucurbitaceae and its implications for character evolution and classification. *Molecular Phylogenetics and Evolution* 44: 553–577.
- KRESS, W. J., AND D. L. ERICKSON. 2007. A two-locus global DNA barcode for land plants: The coding *rbcL* gene complements the noncoding *trnH-psbA* spacer region. *PLoS ONE* 2: e508.
- KRESS, W. J., K. J. WURDACK, E. A. ZIMMER, L. A. WEIGT, AND D. H. JANZEN. 2005. Use of DNA barcodes to identify flowering plants. *Proceedings of the National Academy of Sciences*, USA 102: 8369–8374.
- MARSHALL, E. 2005. Taxonomy—Will DNA bar codes breathe life into classification? *Science* 307: 1037.
- MARTICORENA, C. 1963. Material para una monografía de la morfología del pollen de Cucurbitaceae. Grana 4: 78–91.
- MEIER, R., K. SHIYANG, G. VAIDYA, AND P. K. L. NG. 2006. DNA barcoding and taxonomy in Diptera: A tale of high intraspecific variability and low identification success. *Systematic Biology* 55: 715–728.
- MEYER, C. P., AND G. PAULAY. 2005. DNA barcoding: Error rates based on comprehensive sampling. *PLoS Biology* 3: e422.
- MILLER, P. 1754. The gardeners dictionary: Containing the methods of cultivating and improving the kitchen, fruit and flower garden, as also the physick garden, wilderness, conservatory, and vineyard. Oxford University Press, Oxford, UK.
- MÜLLER, K. F. 2005. SeqState—Primer design and sequence statistics for phylogenetic DNA data sets. *Applied Bioinformatics* 4: 65–69.
- MURAWSKI, D. A., AND L. E. GILBERT. 1986. Pollen flow in *Psiguria warscewiczii*, a comparison of *Heliconius* butterflies and hummingbirds. *Oecologia* 68: 161–167.
- NYLANDER, J. A. A., F. RONQUIST, J. P. HUELSENBECK, AND J. L. NIEVES-ALDREY. 2004. Bayesian phylogenetic analysis of combined data. *Systematic Biology* 53: 47–67.
- PADOLINA, J. M. 2006. Phylogenetic reconstruction of *Phalaenopsis* using nuclear and chloroplast DNA sequence data and using *Phalaenopsis* as a natural system for assessing methods to reconstruct hybrid evolution in phylogenetic analyses. Ph.D. dissertation, University of Texas, Austin, Texas, USA.
- PANERO, J. L., AND B. S. CROZIER. 2003. Primers for PCR amplification of Asteraceae chloroplast DNA. *Lundellia* 6: 1–9.
- PLUTHERO, F. G. 1993. Rapid purification of high-activity *Taq* DNA polymerase. *Nucleic Acids Research* 21: 4850–4851.
- SAMBROOK, J. E., E. F. FRITSCH, AND T. MANIATIS. 1989. Molecular cloning: A laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.
- SASLIS-LAGOUDAKIS, C., M. W. CHASE, D. N. ROBINSON, S. J. RUSSELL, AND B. B. KLITGAARD. 2008. Phylogenetics of neotropical *Platymiscium* (Leguminosae: Dalbergieae): Systematics, divergence times and biogeography inferred from nuclear ribosomal and plastid DNA sequence data. *American Journal of Botany* 95: 1270–1286.
- SCHAEFER, H., C. HEIBL, AND S. S. RENNER. 2009. Gourds afloat: A dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous overseas dispersal events. *Proceedings of the Royal Society of London, B, Biological Sciences* 276: 843–851.
- SCHINDEL, D. E., AND S. E. MILLER. 2005. DNA barcoding a useful tool for taxonomists. *Nature* 435: 17.
- SHAW, J., E. B. LICKEY, J. T. BECK, S. B. FARMER, W. LIU, J. MILLER, K. C. SIRIPUN, ET AL. 2005. The tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. *American Journal of Botany* 92: 142–166.

- SHAW, J., E. B. LICKEY, E. E. SCHILLING, AND R. L. SMALL. 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. American Journal of Botany 94: 275–288.
- SHIMODAIRA, H., AND M. HASEGAWA. 1999. Multiple comparisons of loglikelihoods with applications to phylogenetic inference. *Molecular Biology and Evolution* 16: 1114–1116.
- SIMMONS, M.P., ANDH. OCHOTERENA. 2000. Gaps as characters in sequencebased phylogenetic analyses. *Systematic Biology* 49: 369–381.
- SPOONER, D. 2009. DNA barcoding will frequently fail in complicated groups: An example in wild potatoes. *American Journal of Botany* 96: 1177–1189.
- STEELE, P. R. In press. Taxonomic revision of the neotropical genus *Psiguria* (Cucurbitaceae). *Systematic Botany*.
- STEELE, P. R., M. GUISINGER-BELLIAN, C. R. LINDER, AND R. K. JANSEN. 2008. Phylogenetic utility of 144 low-copy nuclear regions in taxa at different taxonomic levels in two distantly related families of rosids. *Molecular Phylogenetics and Evolution* 48: 1013–1026.
- SWOFFORD, D. L. 2002. PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer, Sunderland, Massachusetts, USA.
- THOMPSON, J. D., T. J. GIBSON, F. PLEWNIAK, F. JEANMOUGIN, AND D. G. HIGGINS. 1997. The CLUSTAL_X windows interface: Flexible

strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Research* 25: 4876–4882.

- TIMME, R. E., J. V. KUEHL, J. L. BOORE, AND R. K. JANSEN. 2007. Comparative analysis of the *Lactuca* and *Helianthus* (Asteraceae) plastid genomes: Identification of divergent regions and categorization of shared repeats. *American Journal of Botany* 94: 302–312.
- WERA, S., AND B. A. HEMMINGS. 1995. Serine/threonine protein phosphatases. *Biochemical Journal* 311: 17–29.
- WIENS, J. J. 2007. Species delimitation: New approaches for discovering diversity. Systematic Biology 56: 875–878.
- WILL, K. W., B. D. MISHLER, AND Q. D. WHEELER. 2005. The perils of DNA barcoding and the need for integrative taxonomy. *Systematic Biology* 54: 844–851.
- WITT, J. D. S., D. L. THRELOFF, AND P. D. N. HEBERT. 2006. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: Implications for desert spring conservation. *Molecular Ecology* 15: 3073–3082.
- WUNDERLIN, R. P. 1978. Flora of Panama, part IX: Family 182 Cucurbitaceae. Annals of the Missouri Botanical Garden. 65: 285– 288, 344–349, 365.
- ZWICKL, D. J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence data sets under the maximum likelihood criterion. Ph.D. dissertation, University of Texas, Austin, Texas, USA. Website http://www.bio.utexas.edu/faculty/antisense/garli/Garli.html.

Sample	ndhC-trnV	ndhF-rpl32	psbE-petL	psbM-trnD	psbZ-trnM	rpoB-trnC	rps16-trnQ	trnS-trnG	ITS	s/t phos
Doyerea emeto-carthartica (1)	GQ489256	GQ489337	GQ489410	GQ489492	GQ489576	GQ489660	GQ489743	GQ489821	GQ489902–905	GQ490148–154
Doyerea emeto-carthartica (2)	GQ489257	GQ489338	GQ489411	GQ489493	GQ489577	GQ489661	GQ489744	GQ489822	GQ489906–909	
Gurania acuminata (3)	GQ489260	GQ489341	GQ489414	GQ489496	GQ489580	GQ489664	GQ489747	GQ489825		GQ490164
Gurania costartcensis (4) Gurania eriantha (5)	GO489259	GO489340	GO489413	GO489493	GO489578	GO489667	GO480745	GO489823	GO489910-014	— GO490155_163
Gurania insolita (6)	GO489261	GO489342	GO489415	G0489497	G0489581	GO489665	G0489748	G0489826		GO490165-174
Gurania lobata (7)	GQ489262	GQ489343	GQ489416	GQ489498	GQ489582	GQ489666	GQ489749	GQ489827	GQ489919–921	GQ490175–185
Gurania sp. (8)	GQ489263	GQ489344	GQ489417	GQ489499	GQ489583	GQ489667	GQ489750	GQ489828	GQ489922–925	GQ490186–192
Gurania sp. (9)	GQ489264	GQ489345	GQ489418	GQ489500	GQ489584	GQ489668	GQ489751	GQ489829	GQ489926–930	GQ490193–200
Gurania sp. (10)	GQ489265	GQ489346	GQ489419	GQ489501	GQ489585	GQ489669	GQ489752	GQ489830	GQ489931–934	GQ490201–208
Helmontia Jeffreyt (11) Helmontia lentantha (12)	GQ489260			GQ489502	GQ489380	GQ4896/U	GQ489/23			
ttetmonua tepuanta (12) Psiouria nedata (13)	GO489777	GO489348	GO489474	GO489508	GO489597	GO489676	GO489759	GO489835	GO489946_951	GO490214-220
Psigura pedata (12) Psiguria nedata (14)	GO489273	GO489349	GO489425	GO489509	GO489593	GO489677	GO489760	GO489836	GO489952-956	GO490221-230
Psiguria pedata (15)	GQ489274	GQ489350	GQ489426	GQ489510	GQ489594	GQ489678	GQ489761	GQ489837	GQ489957-959	
Psiguria pedata (16)	GQ489275	GQ489351	GQ489427	GQ489511	GQ489595	GQ489679	GQ489762	GQ489838	GQ489960–964	GQ490231–241
Psiguria pedata (17)	GQ489276	GQ489352	GQ489428	GQ489512	GQ489596	GQ489680	GQ489763	GQ489839	GQ489960–964	GQ490242-251
Psiguria pedata (18)		GQ489353	GQ489429	GQ489513	GQ489597	GQ489681	GQ489764	GQ489840	GQ489969–972	GQ490252–263
Psiguria pedata (19)	GQ489292	GQ489369	GQ489447	GQ489531	GQ489615	GQ489698	GQ489781	GQ489858	GQ490023-026	GQ490326–327
Psiguria pedata (20)	GQ489305	GQ489382	GQ489460	GQ489544	GQ489628	GQ489711	GQ489/92	GQ489871	GQ490067	
Psiguria racemosa (21)	CO489211		GQ489423	10060400	16040970	C/06040D	0C/60400	0,0409034	CO180072 076	004490210-212
F siguria racemosa (22) Deiantria racemosa (73)	GO480778	+CC60+20	GQ4894.30	CO180515	0604000	70060700	CO/80766	GO180817	016-01660+20	
t siguru racemosa (23) Psiouria racemosa (34)	GO489779	GO489355	GO489437	GO489516	GO489600	GO489683	GO489767	GO489843		
Psipuria racemosa (25)	GO489317	GO489393	GO489472	GO489556	GO489640	GO489723	GO489801	GO489882	GO490093	
Psiguria sp. (26)			GQ489446	GQ489530	GQ489614	GQ489697	GQ489780	GQ489857		I
Psiguria triphylla (27)	GQ489270		GQ489422	GQ489506	GQ489590	GQ489674	GQ489757	GQ489833	I	
Psiguria triphylla (28)	GQ489280	GQ489356	GQ489433	GQ489517	GQ489601	GQ489684	GQ489768	GQ489844	GQ489977–980	GQ490264–268
Psiguria triphylla (29)	GQ489281	GQ489357	GQ489434	GQ489518	GQ489602	GQ489685	GQ489769	GQ489845	GQ489981–983	GQ490269–275
Psiguria triphylla (30)	GQ489282	GQ489358	GQ489435	GQ489519	GQ489603	GQ489686	GQ489770	GQ489846	GQ489984–987	Ι
Psiguria triphylla (31)	GQ489283	GQ489359	GQ489436	GQ489520	GQ489604	GQ489687	GQ489771	GQ489847	GQ489988–991	GQ490276–285
Psiguria triphylla (32)	GQ489313	GQ489389	GQ489468	GQ489552	GQ489636	GQ489719	GQ489797	GQ489878	GQ490079-082	GQ490415-422
Psiguria ternata (33)	GQ489284	GQ489360	GQ489437 CO480437	GQ489521	GQ489605	GQ489688	GQ489772	GQ489848	GQ489992-996	GQ490286-291
Psiguria ternata (34)		GQ489361	GQ489438	GQ489522	GQ489606	GQ489689	GQ489773	GQ489849	GQ48999/-000	GQ490292-300
Psiguria ternata (36)	CO180786	GQ489302	GQ489439	5048057A	GQ48900/	GQ489090	GQ489114	00489820	GQ490001-004	GQ490301-310
t siguria ternata (30) Psiouria ternata (37)	GO489787	GO489364	GO489441	GO489525	GO489609	GO489692	GU 480776	GO489857	GO490010012	GO490373
Psiguria ternata (38)	GO489288	GO489365	GO489442	G0489526	GO489610	GO489693	G0489777	G0489853	GO490013-014	GO490324
Psiguria ternata (39)	GQ489289	GQ489366	GQ489443	GQ489527	GQ489611	GQ489694	GQ489778	GQ489854	GQ490015-016	,
Psiguria ternata (40)	GQ489290	GQ489367	GQ489444	GQ489528	GQ489612	GQ489695	GQ489779	GQ489855	GQ490017–018	GQ490325
Psiguria ternata (41)	GQ489291	GQ489368	GQ489445	GQ489529	GQ489613	GQ489696		GQ489856	GQ490019-022	I
Psiguria triphylla (42)	GQ489268		GQ489420	GQ489504	GQ489588	GQ489672	GQ489755	GQ489831	GQ489935–937	
Psiguria triphylla (43)	GQ489293	GQ489370	GQ489448	GQ489532	GQ489616	GQ489699	GQ489782	GQ489859	GQ490027-030	
Psiguria triphylla (44)	GQ489294	GQ489371	GQ489449	GQ489533	GQ489617	GQ489700	GQ489783	GQ489860	GQ490031-033	GQ490328-336
Psiguria triphylla (45)	GQ489295	GQ489372	GQ489450	GQ489534	GQ489618	GQ489701	GQ489784	GQ489861	GQ490034-038	GQ490337-346
Esiguria triphylia (40) Dsiauria trinbulla (A7)	GO480707	C/C60400	GQ489451	CCC404DD	CO180620	GO 180703	CO/80786	GO180863	GO100013 017	GO100356 365
r sıgurta triphytta (41) Psiguria trinhvilla (48)	GO480708	GO489375	GO489453	GO480537	GO489621	GO489704	GO489787	GO489864	GO490043-047	GO490366_368
Psiguria triphylla (49)	GO489299	GO489376	GO489454	GO489538	GO489622	GO489705	GO489788	GO489865	GO490051-053	GO490369-372
Psiguria triphylla (50)	GQ489300	GQ489377	GQ489455	GQ489539	GQ489623	GQ489706	GQ489789	GQ489866	GQ490054-056	GQ490373-383
Psiguria triphylla (51)	GQ489301	GQ489378	GQ489456	GQ489540	GQ489624	GQ489707	GQ489790	GQ489867	GQ490057-060	GQ490384–393
Psiguria triphylla (52)	GQ489302	GQ489379	GQ489457	GQ489541	GQ489625	GQ489708	GQ489791	GQ489868	GQ490061–062	Ι
Psiguria triphylla (53)	GQ489303	GQ489380	GQ489458	GQ489542	GQ489626	GQ489709		GQ489869		
Psiguria triphylla (54)	GQ489504	GQ489381	60489400	GQ489245	GQ484021	GQ489/1U		GQ4898/U	GQ490005-000	GQ490394-393

APPENDIX 1. GenBank accession numbers for all samples and all regions that amplified successfully.

American Journal of Botany

[Vol. 97

APPENDIX 1. Continued.										
Sample	ndhC-trnV	ndhF-rpl32	psbE-petL	psbM-trnD	psbZ- $trmM$	rpoB-trnC	rps16-trnQ	trnS-trnG	ITS	s/t phos
Psiguria triphylla (55)	GQ489306	GQ489383	GQ489461	GQ489545	GQ489629	GQ489712		GQ489872	GQ490068	GQ490396
Psiguria triphylla (56)	GQ489307	GQ489384	GQ489462	GQ489546	GQ489630	GQ489713	GQ489793	GQ489873	GQ490069-073	GQ490397-406
Psiguria triphylla (57)	GQ489308	GQ489385	GQ489463	GQ489547	GQ489631	GQ489714	GQ489794	GQ489874	I	Ι
Psiguria triphylla (58)	GQ489309	GQ489386	GQ489464	GQ489548	GQ489632	GQ489715			I	I
Psiguria triphylla (59)	GQ489310		GQ489465	GQ489549	GQ489633	GQ489716	GQ489795	GQ489875	GQ490074	
Psiguria triphylla (60)	GQ489311	GQ489387	GQ489466	GQ489550	GQ489634	GQ489717	GQ489796	GQ489876	GQ490075-078	GQ490407-414
Psiguria triphylla (61)	GQ489312	GQ489388	GQ489467	GQ489551	GQ489635	GQ489718		GQ489877		
Psiguria triphylla (62)	GQ489314	GQ489390	GQ489469	GQ489553	GQ489637	GQ489720	GQ489798	GQ489879	GQ490083-087	GQ490423-425
Psiguria triphylla (63)	GQ489315	GQ489391	GQ489470	GQ489554	GQ489638	GQ489721	GQ489799	GQ489880	GQ490088-092	GQ490426-427
Psiguria umbrosa (64)	GQ489318	GQ489394	GQ489473	GQ489557	GQ489641	GQ489724	GQ489802	GQ489883	GQ490094-097	
Psiguria umbrosa (65)	GQ489319	GQ489395	GQ489474	GQ489558	GQ489642	GQ489725	GQ489803	GQ489884	GQ490098-101	
Psiguria umbrosa (66)	GQ489320	GQ489396	GQ489475	GQ489559	GQ489643	GQ489726	GQ489804	GQ489885	GQ490102-106	GQ490429-439
Psiguria umbrosa (67)	GQ489321	GQ489397	GQ489476	GQ489560	GQ489644	GQ489727	GQ489805	GQ489886	GQ490107-111	GQ490440
Psiguria umbrosa (68)	GQ489322	GQ489398	GQ489477	GQ489561	GQ489645	GQ489728	GQ489806	GQ489887	GQ490112-115	GQ490441-446
Psiguria umbrosa (69)	GQ489323	GQ489399	GQ489478	GQ489562	GQ489646	GQ489729	GQ489807	GQ489888		
Psiguria warscewiczii (70)	GQ489269	GQ489347	GQ489421	GQ489505	GQ489589	GQ489673	GQ489756	GQ489832	GQ489938–940	GQ490209
Psiguria warscewiczii (71)	GQ489316	GQ489392	GQ489471	GQ489555	GQ489639	GQ489722	GQ489800	GQ489881		GQ490428
Psiguria warscewiczii (72)	GQ489324	GQ489400	GQ489479	GQ489563	GQ489647	GQ489730	GQ489808	GQ489889	GQ490116-119	GQ490447-448
Psiguria warscewiczii (73)	GQ489325	GQ489401	GQ489480	GQ489564	GQ489648	GQ489731	GQ489809	GQ489890	GQ490120-122	GQ490449-459
Psiguria warscewiczii (74)	GQ489326	GQ489402	GQ489481	GQ489565	GQ489649	GQ489732	GQ489810	GQ489891	GQ490123-126	
Psiguria warscewiczii (75)	GQ489327	GQ489403	GQ489482	GQ489566	GQ489650	GQ489733	GQ489811	GQ489892	GQ490127–131	GQ490460-471
Psiguria warscewiczii (76)	GQ489328	GQ489404	GQ489483	GQ489567	GQ489651	GQ489734	GQ489812	GQ489893	GQ490132	GQ490472
Psiguria warscewiczii (77)	GQ489329	GQ489405	GQ489484	GQ489568	GQ489652	GQ489735	GQ489813	GQ489894	GQ490133–137	GQ490473
Psiguria warscewiczii (78)	GQ489330		GQ489485	GQ489569	GQ489653	GQ489736	GQ489814	GQ489895	GQ490138	GQ490474
Psiguria warscewiczii (79)	GQ489331	GQ489406	GQ489486	GQ489570	GQ489654	GQ489737	GQ489815	GQ489896	GQ490139	GQ490475
Psiguria warscewiczii (80)	GQ489332		GQ489487	GQ489571	GQ489655	GQ489738	GQ489816	GQ489897	GQ490140-142	GQ490476
Psiguria warscewiczii (81)	GQ489333	GQ489407	GQ489488	GQ489572	GQ489656	GQ489739	GQ489817	GQ489898	GQ490143	GQ490477-480
Psiguria warscewiczii (82)	GQ489334	GQ489408	GQ489489	GQ489573	GQ489657	GQ489740	GQ489818	GQ489899	GQ490144-145	GQ490481–491
Wilbrandia ebracteata (83)	GQ489335		GQ489490	GQ489574	GQ489658	GQ489741	GQ489819	GQ489900	GQ490146	Ι
Wilbrandia longisepala (84)	GQ489336	GQ489409	GQ489491	GQ489575	GQ489659	GQ489742	GQ489820	GQ489901	GQ490147	GQ490492
<i>Note</i> : "—" indicates the re	gion was not sec	nenced for this s	sample.							

unis sampie. not sequenced tor indicates the region was 1001e: